US009154298B2

a2 United States Patent
Resch

US 9,154,298 B2
Oct. 6, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SECURELY STORING DATA IN A DISPERSED (58) Field of Classification Search

STORAGE NETWORK CPC GOGF 11/0712; GOG6F 11/0784; GOGF
11/0787; GOG6F 11/1004
(71) Applicant: CLEVERSAFE, INC., Chicago, IL USPC .o, 713/153; 726/3, 30

us) See application file for complete search history.

(56) References Cited

(72) Inventor: Jason K. Resch, Chicago, IL. (US)

(73) Assignee: Cleversafe, Inc., Chicago, IL. (US) U.S. PATENT DOCUMENTS

(*) Notice: Subject. to any disclaimer,. the term of this g:ggfdg% ﬁ S;}g;g g,[l;cc}ll(lay otal.
patent is extended or adjusted under 35 5485474 A 1/1996 Rabin
U.S.C. 154(b) by 109 days. (Continued)

(21) Appl. No.: 13/944,277 OTHER PUBLICATIONS

(22) Filed: Jul. 17, 2013 Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-613.
(65) Prior Publication Data (Continued)
US 2014/0068791 Al Mar. 6, 2014

Primary Examiner — Harunur Rashid
Assistant Examiner — Angela Holmes
Related U.S. Application Data (74) Attorney, Agent, or Firm — Garlick & Markison;

(60) Provisional application No. 61/696,018, filed on Aug. Timothy W. Markison

31,2012. (57) ABSTRACT

(51) Imt.CL A method to securely store a data file in a dispersed storage

HO04L 29/06 (2006.01) network (DSN) in a manner to increase difficulty in hacking
Ho4L 9/08 (2006.01) the data file begins by a dispersed storage (DS) processing
GOG6F 21/10 (2013.01) module encoding the data file into a plurality of data portions.
GOG6F 1120 (2006.01) The method continues with the DS processing module dis-
GOG6F 21/60 (2013.01) persed storage error encoding a first data portion to produce a
GOG6F 21/62 (2013.01) set of encoded data slices, generating a set of DSN addresses,

(Continued) and sending the set of encoded data slices to a first set of

(52) US.CL
CPC ... HO4L 9/0861 (2013.01); GOGF 11/2094
(2013.01); GOGF 21/10 (2013.01); GOGF 21/60
(2013.01); GOGF 21/6272 (2013.01); HO4L
9/0894 (2013.01); GOG6F 11/0712 (2013.01):

storage units using the set of DSN addresses. The method
continues with the DS processing module dispersed storage
error encoding a second data portion to produce a second set
of encoded data slices, generating a second set of DSN
addresses, and sending the second set of encoded data slices
to a second set of storage units using the second set of DSN

GO6F 11/0784 (2013.01); GO6F 11/0787 addresses.

(2013.01); GOGF 11/1004 (2013.01); GO6F

11/1092 (2013.01); HO4L 2209/34 (2013.01) 20 Claims, 76 Drawing Sheets

user device 12 DST processing unit 16

computing core 26
DST client
module 3¢

nieriace 32

data 40 &ior task
sequest 38

computing core 26

OST client
module 34

—
{ computing i
I ocore28 |

T

i
- et
interface 32| | interface 30} { interface 30 |

ser device 14

\ /—-(‘ ~

network 24 P

compting
core 26

DSTN managing
unit 18

computing
core 28

DST integrty
processing unit 20

DST executon |

{ | DSTexecution |
] e | e [P

it 36

disttbuted storage &6or
task network {DSTN) rocule 22

distributed computing system 10

US 9,154,298 B2
Page 2

(51) Int.CL
GOGF 11/07
GOGF 11/10

(56)

5,774,643
5,802,364
5,809,285
5,890,156
5,987,622
5,991,414
6,012,159
6,058,454
6,128,277
6,175,571
6,192,472
6,256,688
6,272,658
6,301,604
6,356,949
6,366,995
6,374,336
6,415,373
6,418,539
6,449,688
6,567,948
6,571,282
6,609,223
6,718,361
6,760,808
6,785,768
6,785,783
6,826,711
6,879,596
7,003,688
7,024,451
7,024,609
7,080,101
7,103,824
7,103,915
7,111,115
7,140,044
7,146,644
7,171,493
7,222,133
7,240,236
7,272,613
7,636,724
2002/0062422
2002/0166079
2003/0018927
2003/0037261
2003/0065617
2003/0084020
2004/0024963
2004/0122917
2004/0215998
2004/0228493
2005/0100022
2005/0114594
2005/0125593
2005/0131993
2005/0132070
2005/0144382
2005/0229069
2006/0047907
2006/0136448
2006/0156059

(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

A

A

A

A

A

A

A

A

A

Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
B2
Bl
Bl
Bl
B2
B2
B2
B2
Bl
Bl
B2
B2
Bl
B2
B2
B2
B2
B2
B2
Bl
B2
B2
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

Al
Al
Al

6/1998
9/1998
9/1998
3/1999
11/1999
11/1999
1/2000
5/2000
10/2000
1/2001
2/2001
7/2001
8/2001
10/2001
3/2002
4/2002
4/2002
7/2002
7/2002
9/2002
5/2003
5/2003
8/2003
4/2004
7/2004
8/2004
8/2004
11/2004
4/2005
2/2006
4/2006
4/2006
7/2006
9/2006
9/2006
9/2006
11/2006
12/2006
1/2007
5/2007
7/2007
9/2007
12/2009
5/2002
11/2002
1/2003
2/2003
4/2003
5/2003
2/2004
6/2004
10/2004
11/2004
5/2005
5/2005
6/2005
6/2005
6/2005
6/2005
10/2005
3/2006
6/2006
7/2006

Lubbers et al.
Senator et al.
Hilland
Rekieta et al.
Lo Verso et al.
Garay et al.
Fischer et al.
Gerlach et al.
Bruck et al.
Haddock et al.
Garay et al.
Suetaka et al.
Steele et al.
Nojima
Katsandres et al.
Vilkov et al.
Peters et al.
Peters et al.
Walker

Peters et al.
Steele et al.
Bowman-Amuah
Wolfgang
Basani et al.
Peters et al.
Peters et al.
Buckland
Moulton et al.
Dooply
Pittelkow et al.
Jorgenson
Wolfgang et al.
Watson et al.
Halford
Redlich et al.
Peters et al.
Redlich et al.
Redlich et al.
Shu et al.
Raipurkar et al.
Cutts et al.
Sim et al.

de la Torre et al.

Butterworth et al.

Ulrich et al.
Gadir et al.
Meffert et al.
Watkins et al.
Shu

Talagala et al.
Menon et al.
Buxton et al.
Ma et al.
Ramprashad
Corbett et al.
Karpoff et al.
Fatula, Jr.
Redlich et al.
Schmisseur
Hassner
Shiga et al.
Cialini et al.
Kitamura

2006/0224603 Al 10/2006 Correll, Jr.
2007/0079081 Al 4/2007 Gladwin et al.
2007/0079082 Al 4/2007 Gladwin et al.
2007/0079083 Al 4/2007 Gladwin et al.
2007/0088970 Al 4/2007 Buxton et al.
2007/0174192 Al 7/2007 Gladwin et al.
2007/0214285 Al 9/2007 Auetal.
2007/0234110 Al 10/2007 Soran et al.
2007/0283167 Al 12/2007 Venters, III et al.
2009/0094251 Al 4/2009 Gladwin et al.
2009/0094318 Al 4/2009 Gladwin et al.
2010/0023524 Al 1/2010 Gladwin et al.
2010/0268938 Al* 10/2010 Resch ... 713/153

OTHER PUBLICATIONS

Rabin; Efficient Dispersal of Information for Security, Load Balanc-
ing, and Fault Tolerance; Journal of the Association for Computer
Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
pp. 1-74.

Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
and Information Science, University of Konstanz; Feb. 2007; 60 pgs.
Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes and
Matching Rules; IETF Network Working Group; RFC 4517, Jun.
2006, pp. 1-50.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
tionalized String Preparation; IETF Network Working Group; RFC
4518; Jun. 2006; pp. 1-14.

Smith; Lightweight Directory Access Protocol (LDAP): Uniform
Resource Locator; IETF Network Working Group; RFC 4516, Jun.
2006; pp. 1-15.

Smith; Lightweight Directory Access Protocol (LDAP): String Rep-
resentation of Search Filters; IETF Network Working Group; RFC
4515; Jun. 2006; pp. 1-12.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Directory
Information Models; IETF Network Working Group; RFC 4512; Jun.
2006; pp. 1-49.

Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
for User Applications; IETF Network Working Group; RFC 4519,
Jun. 2006; pp. 1-33.

Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
tication Methods and Security Mechanisms; IETF Network Working
Group; RFC 4513; Jun. 2006; pp. 1-32.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Technical
Specification Road Map; IETF Network Working Group; RFC 4510,
Jun. 2006; pp. 1-8.

Zeilenga; Lightweight Directory Access Protocol (LDAP): String
Representation of Distinguished Names; IETF Network Working
Group; RFC 4514; Jun. 2006; pp. 1-15.

Sermersheim; Lightweight Directory Access Protocol (LDAP): The
Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
1-68.

Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
Xin, et al.; Evaluation of Distributed Recovery in Large-Scale Stor-
age Systems; 13th IEEE International Symposium on High Perfor-
mance Distributed Computing; Jun. 2004; pp. 172-181.
Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

* cited by examiner

US 9,154,298 B2

Sheet 1 of 76

Oct. 6, 2015

U.S. Patent

01 waishs Bugndwios paynglisip

} Ol

87 yun
BuBieuew N1SQ

Tz 0100
Bugndwioo

£T 90BLBII |

Z¢ sihpow (N1SQ) Momsu %se)

lo/g abesois panguasip

uonhoaxa 15

§¢ yun

uonnosxe 1 8J

8¢ uun

71 80IA8p Josn

(0Z hun Buissesoid
Aiber 1@

Oz 2100
Bunndwoo

¢

£¢ aoeLBI

A

A4

0€ ooBpON |

97 9400
Bunnduioo

&% 159nbai
%se} 10/ 0F elep

»!
>

e

a0BpSuI _ _

28 aoeualU

Y

!]

¥E ainpottt
Jusio 18a

97 al0o Bugnduwiod

&7 hun Buissencud 1SQ

7€ aoeps)u _

L 3

\J

FE sjnpowu
ueip 1Sa

9z 8100 Bupndwod

I eoinap Josn

US 9,154,298 B2

Sheet 2 of 76

Oct. 6, 2015

U.S. Patent

§7 sinpouw
aoepelul N1SQ

$7 sinpow
aoepeiu QH

Z7 3inpow soepau

ysey

{7 sjnpotu
aoBLBIUL YIoMBU

G ajnpow
|0BlOIU YEH

89 ainpoLu
adepsiul gsn

4

A

t

t

A

f

«:: f;

86 aoepalul [0d 79 S0ig
r oY
A
\d A
gGmjonuoo | | (Geoepe |
o] D ol o
/Y
4
5 L 8 o {iG einpow
fAowsw uew | | Jejonuod Mowsw | Buissanoud

A

Y

G5 yun Buissaooid
saydesb oapia

29 sjnpow
soBSul
818D O

g 400 Bunndwoo

!
{
!
f
{
{
{
{
{
!
f
{
{
!
!
!
!
f
{
!
{
!
f
{
{

——t

US 9,154,298 B2

Sheet 3 of 76

Oct. 6, 2015

U.S. Patent

U JUN UOHN09XD 1 S0

06 ainpow S sjnpow
LolNoeXa 1 sl 18d
—_ — ¥3 9jnpo
8¢ Aowsli 9g J8ffonuco wmam_wwo“m

ug (sh

|nsai [eiued

U SS0I|S persijal

U ysey jensed

ug dnoib sis

L Hun
uonnoexe 18q

L# (snsau [eie

$Z Momiau

L# S90I|S PeABL)a)

L# (sl jeed

14 dnosb 804s

v

201
synseJ |epded

001
S80IIS PABLYSI

86

28 Buissaooud
18q punog

S%se) feised

36
sbuidnoib aoys

|

(08 Buissaooud
180 punogino

€ sjnpow Jusio 184

i
e

_—

«—t—

———

707 1nsai

z6 e1ep

76 wsey

6 Blep

US 9,154,298 B2

0g Busssaooid 9@ punogino

Sheet 4 of 76

Oct. 6, 2015

18d ~ 1# dnoib aoys

I
| |
i I
i I
! 317 sinpow “
“ — [OAUCO ¥SE} | L eyl
| 86 yse jerped paINqUISIp "
i
I I'y I
i I
i A\ I
! "
| 011 sinpow
Ut Jun - ug dnoib aoys " e E_ﬁo:_c %o — "
uognosxe | ! 091 1oRU 097 104u00 |
’ < I
- i
150 U# %SE) 1 0o} j04uoo "
! ¥
I
i
™ i —_— = a _
10jo8(0s Buipooua ! o=
u " qwca_ﬁ,ém “ Y 4 Lvo y acm a - Buiuonied fe—— 26 EIEP
! _ \ Biep _
! "
wun | LS ! / omed o \ !
= - iiead g} e]
UoRNoaXa
Anosx |35 sBuidnosf eoys jod seoifs papoous 0V Suonned elep |
i
I
i

U.S. Patent

US 9,154,298 B2

Sheet 5 of 76

Oct. 6, 2015

U.S. Patent

SHUN | S SAldadsal
0} syse) jeied Buipuodssniod
pue sbuidnoib a0ys puss

a J

syse}
{ended sanpoud o} Buiuoniied ysey
8U} Uo paseq (s)yse} sy uopiped

o] A

sbuidnoub so1is 8onpoid
0} s.ejeweled Buissaoold sy ypm
a0UBpI0SoE Ul Bjep auy Buisssoosd

Vel A

siolpwesed buisseooid elep

pue SHun } S 8yl Uo peseq
Buiuonied yse)} suiLIg)ep

4%

SHUN | §(JO Jequinu 8y} uo
poseq elep sy} jo sisjeweled
Buisse004d suiuLBlep

......w. 4

<D

(s)ysey sy} poddns 0y shun
15 10 J8qWiNU B BUILIISIEP

gcl

(s)ysey Buipuodssliog
© PUR BIED SAIR08!

743

US 9,154,298 B2

Sheet 6 of 76

Oct. 6, 2015

U.S. Patent

8G1 eiep
papOoIUd 9G] elep HCT suswbes
paoys papooUs painoss
A [zbupoousoue sg
“ 051 vyl 5T
| Buisssooud | 87t | | | 9%} Bupoous | Busssooid | Buissono.d
_ __ Aunoes | Buoys | Jous - funoes | UswBos
" 30ys Jad juawibas }
] 'y A
| Y4 W R <) W N A
227 uopued 09 lofioo ot
gjep Jad s90lis o — —
BJep POpoIud 091 1oAU0d | 37T einpows | 091 10AU0D sswBes ejep
{ORU0D
091 104u00 05T, 104u09

0cl
uonited elep

US 9,154,298 B2

Sheet 7 of 76

Oct. 6, 2015

U.S. Patent

g usuibas ejep g juawbas pjep { suibas ejep Z uswbas vlep £°OH
svp || vwp | evp || zvp | wp || ovP | 6ep | [sep | sep | | oep | Gep || vep | ecp || zep | iep
osp || 62p | 8ep || Lzp | 9z || Sep | wep || €ep | zep || vep | oo || 6 | e || 4P | 9
aip | [ve fewp || zio | wp {fow] ep g | Ip 9 | gp wp | €p | b

/ uswBas gjep G Juslibas gjep ¢ uewibes elep | Juawhos eyep
{ svp | wop | evp | 2op | v | ovp | 6ep | aco | 2ep | oep | cep | wep | eop | zep | uep |
{ ocp | 620 | szp | zzp | 9zp | szp | vep [ezp [zzp | tzp [oz [ewp | e | uip | 9ip |
tap {wp e [zp | wp Jowp {60 [op | 2p | op | ap | w0 | ep | 2o | 1p|
svp | vwp | evp | zp | 1P 55T syuewbes Bjgp
ovp | 6cp | 8ep | ep | ogp
qep | vep | €ep | zep | Lep
oep | 620 | 8zp | 20 | 92p 75T .
gz | vep | eer | zap | sep Buisseoosd e _owmwo
020 | 6P | 8P | ZtP | aip wouibos
Gip | vip | €1 | ZIp | WP
op | 6p | 8 | s | op st
gp 1Y €p Zp ip uoniped eep

§Z7 uoned eyep

US 9,154,298 B2

Sheet 8 of 76

Oct. 6, 2015

U.S. Patent

g5
| 78s3 17853 | owpesa | oepesq | Gipgsa | 8#1uewbSs o) Sa0ys B papoous 4o 1as
®
®
L
| Zes3 L 6S3 | 96%96P €50 | 12902 €50 | 99ep £sq | ©f 1UW3S 10} S90S BlED papoolia 010
| zzs3 V253 | veweer 290 | 619810 250 | wpepgsq | o# 1ewbos Joj sadys elep papoous J0 10
_ 183 1183 _ ZERIEP 180 _ L1891P7 180 _ ZeLp1sa _ L# Wawbss Joj se0ys BlEp PapOsUS JO 188
091 a1 a% Buipoous 0ot
ojuos] Buogs | jous T onuoo
g 1swbss ejep 9 Juswbas ejep Juewbes eiep Z Juswbas elep
gvp | | w0 | evp || zvp | wvp || owp [6cp | | Bep | sep | | oep | e || vep | gep || zep | uep
ocp | | 620 | szp || szp | 9z || sep [vep || czp [zep || vep | oz || ewp [@p || up | 9p
sip || v [ew || @ | up || o | 6P g | 2p o | g 7P | €p | e
J Wewbas ejep G Justwbas glep ¢ juswbas Bjep | ustiBes vlep

US 9,154,298 B2

Sheet 9 of 76

Oct. 6, 2015

U.S. Patent

| 7Zssa | 1953 | srpesa | | ocessa | | sipesa |
e @ ® e ®
¢ L] ® [] ®
@ [] ® ® ®
Zesa	SE	oeysepesa		Lesozpesa		9vspesa
Zesa	R	voseep zsa		6198ipzsa		weep zsa
Z1s3	E Lzesiepisa		Zisoipisa		omipisa	
S# 150 0} v# 180 0) £41800) 241800} 11500}						
_ 2N						
g6 sbuidnaib aoys .~						
L						
TRt o						
7ss3 igsa	579 85	ocrssa	sipesa			
o						
®						
zes3 1es3	ocwseresa	ewoeresa	99spesg	57		
uoniised eyep Joj						
zes3 1253	yewespzsa	eiseipzsa	yeepzsg	0 SePNS pepos		
Z1s3 1153	zemerisa	usopTisa	zeipisg			

US 9,154,298 B2

Sheet 10 of 76

Oct. 6, 2015

U.S. Patent

SHUNXT ISA PUUNXT LSO SN XI LSO ZMNXI 1SA 1L HeN X3 1SA
Ounyd ejep {uonnied {uonpsed Dunyoelep | (qunyod ejep
snonByuod) | 4of L elep 03 | Jojzetep H3) | snonbpuod) | snonbyuos)

b X v X §x X 7X
dnosB soys dnoJb soys dnoib aoys dneif soys dno:b ao1s
SIUNXI LSO PINNXI LSA SN XE 1SO ZHNXI 1SA LN X3 1sa

(Guunyoelep | Ounyseep | (unyo elep (uonn.ed (uoned
snonByuoo) | snonByuod) | snonBruod) | Jopz elep nF) | Jof | B8P 93)
£e 7t 1€ §e 7 e
dno.B aoiis dnosf a04s dnoub aals dnoJG soys dnoJb sons
SHNXILSA PN XTI ISQ SN XI LSO ZHUN X LSA L WN X3 1Sd
{vomed (Gunyoerep | (junyoeep | {yunys elep)
joj elepn3) | snonbByuoo) | snonbiiuca) | snmonfiuca) | lojz eiep 03)
ve £7¢ ¢ 4 4
dnoib soys dnouf soys dnolb soys dnosb eoys dnosb soys
SN XTI 1SO PN XTI LSQ CHUN XD LSU ZHuN X3 1SA LWN XT LSa
{uoed (uotired (ungoelep | (yunyoejep | (junyo eiep
lojzeepn3) |0y eiep03) | snonbpuod) | snonfiguod) | snonbBpuod)
51 vl ! [bl
dnoib soys dnoib soys dnoJb aoys dnoib eoys dnoub 8ol
SN XI LSO PN XI LSA €N XF LSO ZHNXI LSA LW XF Lsa

™,

uoiouny Buidnosb
pue Buiposus

96 syse} jeped

X
uopnied egp

4
ucpped ejep

12
uoHed ejep

{198 yunyd)

W
vogped ejep

ot
Buognied

6 eEp

L4 Jun uonnoaxs | S(

US 9,154,298 B2

Sheet 11 of 76

Oct. 6, 2015

U.S. Patent

86 (s)isey
— {eiued
9§ 18}}0J1U0) @
8l .
941
JOAU0D o0 —
1sd %SE} fiowew
- Y y 96 se0lfs
€ apnpow 6% ainpow |- <
w3 183 uoNI@ |.q | Qg8 Alowuaw _ .
P01 sinsal
A A A o
001 seois
0T SISl eed >
>

771 syse; [enied-gns pue [/ sbuidnoib soys-gns

891 >oeapes) 1S

interface 169

L4 Iun 41 q io}
(spise) ered

Z X
elep snonbyuoo

| €ejep 03

¢ zekep D3

171 (unyo)
ejep snonfjuod

N X3
180 o sdnoib soys

Xj uoped

&4 uonied

Zi# uopiyed

L# uonied

US 9,154,298 B2

Sheet 12 of 76

Oct. 6, 2015

U.S. Patent

L liun uopnaexs 1SA

§/1 |0nu0d ysel

| uopred
Joj ysey jensed

9g 43}j0AU0D

Gip 88d

| uonnied jo | dnoub
10} (8))nssi jeed

e

GiP | wiP | CiP | 2P | LD
oip | 6P 8p p 9p v& [043u0o
owsll
gp 124 ep cp Y Y \d
| uonited Jo $Yo0jq B1ep .
snonbiuod pajquIasse-al _ < 838 Asowsatu
06 °|npowl
UopRnIaxs
SY20|q elep pajqiuesse 1a
-1 uo (sjuonouny
ysel jeied wuopad

pIRELP €80

ZI8LPp €sa
0136P €90
g8.p £sa
986p €80
¥8EP 28d

Z91p 18a

BEHEHH

-
o=
&=
a
>
[«
Smen
(&)
Q
&

@
=

| uoyped jo m,mo_mm_
elep popooue

US 9,154,298 B2

Sheet 13 of 76

Oct. 6, 2015

U.S. Patent

Ug Jiun
uonnoexs
18d

73 Juissasoud 15 punogut

ug {Shinsai jeped

Ug# SOO1I8 paAsilel

b lun
uonnsexa

18d

EEENEE—
L# (S)ynsa jensed

L # S901|S parsujel

. POl

© {skynsal

81 sinpouw
p— »| 01U0D Y58
70} synsai jeiued paINqUISID
A
Y
G837 sinpow
{61 [04u00 i {061 [oquoo
(61 1011L00
17 0ol 10K i v
087 73] ¥eb
08} | 28V Bupoosp _
Buidnosf-ap ™ lousgq > Buuonied
\ \ | epEep
\ \
501 \ 227 uoned \ et

S23lS paAsiiel

ejep Jod

SOHS POPOIUD

suoned eep

US 9,154,298 B2

Sheet 14 of 76

Oct. 6, 2015

U.S. Patent

Y151

(s)hynseu

atj sonpoud o) Buissanosd
S}NSa! au} Ylim 8duepiod0e. Ui
synsai |egsed sy Butsseooid

00

A

)Se] By} UO paseq

Buisseooud ynsal Buituisiap

861

4

synsai jeied sy} 0}

Buipuiodsatioo yse} Buiasine)

961

4

synsal jeied 9A19081

US 9,154,298 B2

Sheet 15 of 76

Oct. 6, 2015

U.S. Patent

T o5

443

S90S 40 S18S OJu Uolied

| zes3 | 1ss3 | awpesa | ospesa | sipesa |
®
®
®
zesa	1es3 [ocwsepesa	zsozpesa	owspesa	
zzsa	1Tzs3	vewespTesa	eimsipTzsa	yeepTzsa
Zisa	i3	zemepTisa	zipolpTisa	zmipTisa
087 Jopses ooz				
Buidnosb-ap < 061 johuee				
i A				
S91iS panelal £ V				
Zess		vesa		575 850
® e ® ® ®				
® L] ® [4 e				
[] [] [] [2 []				
Zesa		1es3		oewsepesa
Zesa		ves3		vesecozsa
zusa		s3] [zemernisa	[aseisa	
G#NIISqWOY pHNILSAWOY E#NTISQWOY Z#NTLSQWOY |#N3I 1SQ w0y

B 0] S90IIS PaAsLI}a)

} uonned Jof

US 9,154,298 B2

Sheet 16 of 76

Oct. 6, 2015

U.S. Patent

91 'O
8¢l ejep 3G} eep 7eT sjuewbes
pPapooUs Paols papoou paInoses
i 28} Buipooap Joue pasiadsip m
§
! — i
" — 80¢ !
\ 5 ¢0¢] Buisssooid 5 §
| WISS800) T a5 ,
Ly _ | v0e _ | §0Z Bupoosp | | | Aunoss
F 0 | Munossaolils [T | Buoys-ep | | Jous ™ ewbss > Dusssoold —
\ " Jad asseAul oS IoAUI Justbas-ap "/
I i H
\ R R @ (shiilee) "
44} o] 0ct
uonied e Joj 061 104u0d | gg7enpow | 061 108UCd gquewbes ejep uogied elep
$S30l|S PaAaLlal 100
061 lo4u00 0BT [0aU0d

US 9,154,298 B2

Sheet 17 of 76

Oct. 6, 2015

U.S. Patent

LT O
Quswbas pep 9 Juswbas ejep juswibias eep Z ewbas elep
Gvp 20 A e | P ovP | &8P 8tp | Igp 9P | QEp peD | eEp 7ep | iep
0cp 6P | 8zk 1P | 9¢p Gep | vap g | TP bch | 0ep 6ip | aip LiP | 8ip
GLp pLD | €LP ZiP | WP 0ip | 6P 8 p 9p ap 124 £p o iy

£ swbas eep

¢ juawbas gyep

FCT stuawbas

paInoss V
_ 807 Buipoasp | ¥0T
06} jonuca — sous V7| Bupys-ap
\
5T ejep /
papooLs AN
| zesa | oepesa | sipesa |
@
[]
@
| Zesa | 17esa | gewseresa]

| veveepzsa | 61msipzsa | veepzsa |

| zep1ep 150 | 2189ipsa | z91pTiSq |

¢ wawbss ejep

gaT epep
PapodLS PaOHS

| Juswbss glep

< (f} |04U00

o Juowbas Joj Sa01s 10 5198

of Juawibas Joj seolis JO s1es

Z# 1ualbBas 0} S80S |0 S19s

L# 1usWiBas Joj S90IiS 10 5195

US 9,154,298 B2

Sheet 18 of 76

Oct. 6, 2015

U.S. Patent

uoned ejep
svp | v [evp | 2vp | wp i
ovp | 6ep | eep | 4ep | oep uopyied ejep
sep | vep | eep [zep | iep
oep | 62p | szp | 4zp | gep —
szp | vzp | ezp | zzp | vz LR
ozp [6tp [atp [up | op Wowbas-ap 0100
sip [wp [e [aip | up
o [6 [s [0 | op
AERERERE 3

sjuswbes ejep

bovp | vwp [s | 2o | 1o | ovp | 6t | 9cp | zep | ocp | gep | vep | eep | zep | ep |

toco | 6zp | sep | zep | 9zp | szp | vep | cep | zzp | szp | oep | 6o | @p | 2P | aip |

b fwp [etpfawp [up o | ep [ap | ap | 90 | op

BIERERER

g Juswibes eyep g Juswbss ejep 1 Wewibss ejep Z luswbes elep
cvp P | CP P | Lvp ovR | 6EP 8ep | Lgp gegp | GEp yep | £ep Zep | olep
oep 6ZP | 82p e | 9zp gZp | vep gcP | 2P bZh | OgP 6iPp | 8Lp LIP { 9ip
GiLp PP | ELP Zip | LR 0ip | &P 8p P 9p Gp 114 £p 4Y Lp
J Juswbas ejep G Juawibss ejep ¢ Juswbas ejep | Juswbes ejep

US 9,154,298 B2

Sheet 19 of 76

Oct. 6, 2015

U.S. Patent

(unyo eep (uored {uogped Ounyoeep | (sunyo eyep
snonBruod) | Joj 4 elep 03) | Jopzelep 03) | snonByuoa) | snonBpuod)

b X v X G X ¢X X
dnoub aoys dnoif soys dnosB sos dnoub soys dnoib soys
SN X3 1SA vHUN X3 LSA N X LSA N X3 1SA {WuN X3 LSa

(unyo elep | (qunyoejep | (unyo eyep {uogied (uogned
snonBpuoo) | snonbguod) | snonfjuod) | Jojz elep D3} | o) L elep HI)
£e 7¢ [e Ve
dnoub aols dnoib aois dnout ao1s dnoub aoys dnosb eoys
GHINXILISA YWNXI LSQ cHNXI LSO ZWNXI LSA 1IN X3 1sa
{uoned (unyoelep | (yunyoegep | (unysejep {uopiued
lojpelep03) | snonByuoa) | snonBiuos) | snonByuoa) | iofz BlRp H3)
v £z 72 [Gz
droiB eoys dnoib soys dnoub soys dnoub soys dnoJb soys
SN XI 1SA vHUN XT LSO SN XA LSA N X3 LSA LN X3 LSa
{uogied (uoniped (qunyoelep | {unyseep | (unyo ejep
Jopzerepo3) | oy eepng) | snonbnuoo) | snonByuos) | snonbiuoo)
gl vl €l Z'l 1l
driosB aoys dnoib soys dnoib soys dnoub sois dnoif 8018
SN XT ISA PIUNXT 1SA £INXT LSO ZWNXI LSO LN X3 1sq

AV AV VY

{14
Buipoosp
pue
Buidno.B-sp

Xf
uopped ejep

%1
uonied ejep

z#
uopnied ejep

(1s yunyo)
1#
uonied elep

61 'Oid
7%
Buuonied
-8p
Z6 Blep

US 9,154,298 B2

Sheet 20 of 76

Oct. 6, 2015

U.S. Patent

L JUN LONoSXa 1SQ

001} S80S paAstilial

78 Buissacoid

m. 1
3 {
{ i
3 i
: 06 8inpow PE sinpow ;
! UOgNOBYa | (Jusio 150 “
! "
i i
1 i
i i
— — 3
v |88 Aowew 93 Jojou0a i
! "
1 }
llllll NWI'I'I»"'I'I""I'I'L
Uff S3OIS PaASLa l
®
@
®
U# SO0l \
7z ompau
V#

Hun uohnoeXe § Q0

L# SOOIS Pansia

4

Y
S
K
3

150 punogui _

(g Buissaooud

L4 SOOS

gi

o~

$80ljs

13Q punogino

7€ sinpoul Jusie 1S

US 9,154,298 B2

Sheet 21 of 76

Oct. 6, 2015

U.S. Patent

U Jiun
X3 180

811 sinpow
|0JJU0D YSE)
painglisip

J 3
Y

L Hun
X3 1sd

50011$ 09} |04u0d

10 ug Jejid

¥l Jowstes

§11 sinpow
|043U00

0g 8uissasoid | §@ punogino

0ze ssedhq

(002
\

Y

Buidnoib |~

i
{
i
I
! _
$901jS ! s mmo_mmﬁm&m:a
i
10 | seyyd ! | |
i

711 Buipoous
oue 8

ol
Buuonied
RIRD

81
$901jS PIPOOUD

6 ejep

US 9,154,298 B2

Sheet 22 of 76

Oct. 6, 2015

U.S. Patent

-

\

.

Z6 eiep

§7X b X £7X X 17X x4 Juswifas ejep
®
e
L J
| ¢z | vo | €2 | T¢ 12 | zitjueuwbss ejep |
L s | vy | e | &) | 1#weubes eep |
F#4
Bupys ¥
Buipoous
(T T e e m e fndude b ?
! 211 Buipoous Jouse pasiadsip !
1
- “ i Pl —
8ie ! Buissa00id 5T 9rl Buissa00.d 44
juswibos ejep sed Anﬂ! fnoes [buoys | Buipoous |« funoes [mc_mwwmeq
§804S Paposus ! o015 Jad lous JuswBss wiewibos
i
! A A 097 losuoo} A A
<Gl
857 jonuco 317 enpow | §aT joquo syusuwibes ejep
i [0U0D _—
09} joRUQT 09} josu00

US 9,154,298 B2

Sheet 23 of 76

Oct. 6, 2015

U.S. Patent

x Bes jo x Bos jo x Bas jo x fos jo x Bas jo
soys Geid | ooys puepd | eosgueid | eoys zuepd | eoys | teyd
®
®
@
¢ Bas o ¢ Besyo ¢ Bas o ¢ fss o ¢ Bas jo
sos ged | eos puepd | eoysgtepd | eoyszseld | 8oys | seyid
zbBes o ZBes o Zbasio z Bes jo Zbasjo
soys G refd | ooys paelpd | eoysgued | ooys zJejpd | edys | seyd
| bas jo | Bes jo | Bas jo y Bas jo | Bes jo
aoysgJdepd | eousyaepd | eoysguepd | eoyszuepd | eoys | tepd
SHUN X3 1SA vHUN X2 1SA cHUNXT 1SA Zuun X3 1Sa Lwun X3 1sd

1744
Buidnouf sepd
Buios ‘Buipoous

26 ejep

US 9,154,298 B2

Sheet 24 of 76

Oct. 6, 2015

U.S. Patent

e s e e e e e e en e e e ee e e e e e e e e e s e e

sl 15d

g¢ 2402 3upndwiod

1

1

i

.

i1 | pE s|npow
1

1

1

1

}# Hun uonnoexe [S
9g Jajos1uon
B77 jonuod
Atowsw _
” v Vosd
| S904IS
— | <
06 anpowt < 88 AJowsw
uounexe |1 g | —
| 004
, A S90S

interface 169

x Bas jo
801fs | Jejpd

¢ bas jo
aoys | sejd

z bes jo
sofs | sejpd

i Bes jo
80yfs Jefjid

S30US | # Jejiid

US 9,154,298 B2

Sheet 25 of 76

Oct. 6, 2015

U.S. Patent

Ugt un
UONNDaXe

1sd

Ugt S80S PaABLIR)

®
@
®

g Hun
UolN0axXe

1Sd

Z8 8uissadoud 1Sq punoqui

g%} snpow
JOIUO0D YsE)

panguisip

F 3
¥

08t

061 1041U00

G871 enpow
|00

061

[04U00
3

Buidnosb-ap

L# S80S peAaLIal

I
|
1
I
|
|
|
I
|
I

00T
SQ0HS parsLlal

781 Buipoosp
Jole 8Q

\

uswbes ejep Jad
S80l|S pepoouUs

8ie

§zz ssedAq

Y

¥t

Buuonnied
-ap ejep

Y

26 Ejep

US 9,154,298 B2

Sheet 26 of 76

Oct. 6, 2015

U.S. Patent

¢6 Bep

9¢ ‘Old
g 7X £X 7 X x| m/v [g wousbes ejep
®
[J
°
| sz | ve | c2 | 7z | vz | mv | zit uowbes eep |
; 4
[0 T v T e [T v T v | _H/V [1gweuwbeselep | wouwbes-ep
44
Buipoosp
pUE 801s-8p
e Sommmmm s ;
“ 78T Buipaoep Jouss pasiedsip |
— paaveuel
“ — 80¢
__ I 6 d —
T¥4 D Busseaod - 50 M%Nw i[¥
Juswbos ejep 19d . > »| Buipoosp > . »{ Buissaooid
$80}S PAPOoUD " Aunoas Bugoys-ap 018 uawbos swbas-o
1S papoou " SIS BsiaAul : 9SIBAU u P
- 7y
I S 1o @owesd T S R
_L _ — %13
061 [OJuod g\l sinpow 06} JO1U0O mucm_.cmwm ejep
010D
081 lou00 067 [opu0D

US 9,154,298 B2

Sheet 27 of 76

Oct. 6, 2015

U.S. Patent

Ug Jun
UORNIBXS 180

$E ajnpow
sl 18d

93 J8jjonu0?

(f |inpow
uo#nIBX%d |

L2790l Zeeinpow N1SA
L wgn L bgwn | L opn | L
uognoexs 18Q | ! uognosxe 1SQ ! b uognosxe 18Q " ' uoanosxe |Sa
1 3 1 i 1 H
¥ ojppow | eee m & opnpowu YY) m ¥T ajnpowl YY) m FE oppowu
walR 180 | v| wepisa | | wepisa | b | wepisa
| |]
43 Jojjosu0D \ m Gg Iojjo4u0s \ m 93 Jejjoluod \ m 3¢ I8ljou0s
| I I
06 =Inpow | m 06 einpow | m 06 sinpow | m 06 anpou
uonoaxe g | | ¢ | uonnosxs 1q | | ¢ | uonnosxa 1q | i | uognoaxe 1g
H t H
1 " A I “ ! m !
% 8P03 YSB] Papodus S(_ | !
T T t
| ! R o
| | e B
| “ _ M _ £ 8p02 YSE} PAPOSLS §(] _
“ ! “ ! [“
“ “ | _ 7 9p00 %58} PaposLe S(_ !
I I
I. t 1 i I)
U B1ep paposus §q Lo | 1opooysepepouesa |
[® | | t i i
1 e ! i ! ' {
. L o
€ Biep papodus g _ i : :
“ “ R _ Z BIEP papoous 5 _
i r I I 3 T
“ “ _ | BIEp PapOous S _
|
88 " ” 88 | ” 88 " ; 88
Aiowaw ! ' Aiowsw ! : Kowatu ! : Aowsw
| i) ! ']

US 9,154,298 B2

Sheet 28 of 76

Oct. 6, 2015

U.S. Patent

ZZ sinpow (N1SQ) Jomisu ¥se) § sbeiols papnausip |

_ % PO YSE} PBPOILB J0US §Q _

|

|

|

|

® |
4 |
° |
|

|

|

N

_ Z 9pO9 ¥SE] PApodUs J0LD §(_

_ L 809 JSE) PAPOIL 10418 S(_

ﬁ
|
m _ U Bjep papoous Jous S
i ®
®
| ®
m _ £ BIEP PRpOoUs JOUS S0
w _ Z ©1ep Papoous Jous §a
w _ | BIEP PRPOOUS JOLIS S0
[
mwmmc:oy_c_ CYC uojewioju;
ynsai uoiesole £8q
ZEZ 8inpoL
UOHNGISIP Y4SE]
A A
S5 ove
P07 synsed ateep | Q) vse:
\ 4 pajostes | psjosies
¢# ainpow
weid 15d
& 3
iy yse;- qrueep-
ai g yser - alzewep-
QU asE ai i ewep-
9E¢Sap0a sEL S0 18] YEZeIep J0 151

s e
e S
Hesofle 15d ynssy
252 9inpout
UORNQLISID 3SE}
Iy 4
Bee 0%C

qrewep |qivsey | YO sunsas
poalas pealosies ¥

1% sinpow
s 18d
Zp 3
Qi 9 %se; - al g eiep -
al yise;- al Zewep-
ai 1 yses - Ql Z eiep -
$C758p00 Y8} [0 81| al L eep -
pECeIED JO 18

US 9,154,298 B2

ZbZ UoljBuLIOj
uonedofe (S

Sheet 29 of 76

Oct. 6, 2015

X A
X Y|y
Z ¢
A 18| ¢
X iz | ¢
X £
A 7
X iy
|| =
08z |pow | fun
Sopcedes | X3 | X3
X31d |10 | 1sC

OFC Qidset §€7 i esep e
62 Old
p81s|es psjosles Iy yseL
H ﬁ 71 vsel
Ly seL | ysel
Z gyseL
\M 767 ainpow T | JgyseL | gsel
S UONNQLISIP %SE} m gasel | gsel
N L7 se)
771 usel
— UL YSBL | | YsBet
o] T 8| %z
PN N\ YSEGRS | 3§58
\ P Lo BN vz 08
ayd L o N ve SN
o "\ ISBL-GNS <> se|
R i . /
M AN
i . .
i N,
L N
UTOTIS UTHIS 9LOL | ZXuepY | ZX UTISUTOIS 86 | o8 uppY | 09 u
£€078'6938°6/8 | AL EMPY | AA ¢ £015'¢ D35 01/0L | 99 ¢ PPy | g4 ¢
70187938 G | AX TPV | AX 4 ¢018'7 0388/ | Y ZippY | v Z
OIS O3S GE | XXCLIPY | XX | b 1OIS OIS | WLy | v | L
0lZ | 892 292 | 09
Y7 slajpuieied Zizowp | 8zs | al 997 siejelieled vocolnl | szis | al
sd PPV ¥eel | e[sd ppy ElEq | Bed

ZGZ Seinpow uonnasxe {(d

(GZ uoneuiou abeio)s ysey

8pz uoneunou ebeiois pjep

U.S. Patent

US 9,154,298 B2

Sheet 30 of 76

Oct. 6, 2015

U.S. Patent

0¢ 5 g6z spom | <
anbiun j0 18y J1€ spiom snbiun
367 m 81 EMOY] Hse]
pelejsues)
Apoesioa T
PIC suonejsueny | |
SPIOM JO 181} a0 !
v6e JTE sioud) 0) sredwion
pejejsues A
Apossiooul .
SPIOM JO 18I}
C1E sioud vecewen | - 7o eEp | —
. UoRE|SUES pajejsuRl-o /l/j pajejsuBl kj ¢ eep
€8¢ Spiom PIOM-UOU 80¢ oeq 90¢ — —
-gouojenp | 857 (seselyd) sje[suel jejsuel
SJ04i9 J0 18| SPIOM PaB|SUEL ,\/\,Ml.
aljioads 18} 0T saseiyd Jo/Q Spiom paieisued] Ji0sds
062 SpJom -
-UOU J0 384 N —
Z0E (Areuonoip e utjou “B'9) spiom-uou
097 (sesenyd) |
SpIom o1198ds 18| N p—
00T saseiyd 108 splom ayioads
(Z™1 pue ¢} Jlie paiepI0) SLUOLBISUBL 1094100 SUILISIP - 7 %58}
sasesyd Joyg Spiom oyads pul - 77 SE) (L7} pue G| ¥se} Jaye paioplo) S10140 LOE|SURI) PIOM-UOU BUILIBIEP - 97 %S
algisuen - | ¢ ysafk] {41 5B} J3Yje PRIBPIO) SIS (] 0} 81000 - G} %SE)
SG8BIUY 0% SPIOA PojEjUBS SHIoads Pl - & JeeL {€71 %se) Joye peiapIo) soBq BlBISURY - | %S

{pesepio-ucu) Slejsuel - £ 1 Ysa)
{pasapio-uou) spiom anbiun Auspt - 771 %s8)

g

Aﬁw._mﬁ._o-cocv SpJOM-usY bzcmﬁw -1t xwﬂmﬁ SISAJEUE UCTEJSUBH - | 4SeL

$5SEIU0 10/ SPIOM D1Ji0B0S puUl - ¢ YSeL

US 9,154,298 B2

Sheet 31 of 76

Oct. 6, 2015

U.S. Patent

1€ Ol
IIIIIIIII e e e e
I# o# S# Wit H V4 L#
JUN UORNOSXa ! ¢ Jun UoNOSXs | 4 JIUN UONDSXS | 1 JUN UORNOSXS | 1 JIUN UORNOSXS ! ¢ Jun uopnoaxs !y JuUn UORNJeXd
1Sd 18d 18d 18d 18d 18d 18a
$§ ajnpow 7€ snpoul #E amnpow 7§ anpous ¥€ o|npow 7§ anpou ¥E einpow
Jusls 1Sd sl 183 Juald 18d s 183 eld {53 uslfd 18d el 1Sd

_ G 19J|0JJU0I

b J9}joALod _

_ ¢ JOJjONUO0D

7 J9]j0AU03 _

_ | J9}j01U0D

!
|
!
}
!
i
i
i
i
i
i
i

| J9|j0NUoD ”
i
|
1
!
!
!
!
!
}
!
i
i

}
i
i
i
i
i
i
i
i
]
i
i
| 18}j0AU0d _ !
i
i
i
i
i
i
i
]
i
i
i
i

f

l

i

t

t

t

{

{

”

1

i

§

}

i

L1 enpow L} enpoL L6 enpow L& ajnpow L€ ejnpow 1”7 ajnpout L7} 8inpow
uonnosxa uoynoaxe UoNNoBxXd uonnoaxe UONNOBXS uonnosxa uopnoexs |!
1d 1a id 1a 1d 1d id !

¢

4] 1 4] I 1 4] i

£ 9p03 ¥s€) Papoaus S _ |

i 3.1 1 11 [!

Z 9POD S} Papooue §Q | ! "

T T T k) — — _ _

;! ;! | 1t X o X

! | " " | 89P0 %SE] PSpoduUs g _ !

! 0! 1] 1 [_

b by Z elep papoous 8@ “

by iy - ™ - ™ i

— t o J— t o J— t o . t
ag Aowsw ”“ 89 Aiowsw m" ag Aowsaw ”“ g9 Aowaw m" ag Aiowaw "“ 89 Aowsw m" gg Aowaw !
t] i ¢ t } i ¢ t ! H ¢ f

US 9,154,298 B2

Sheet 32 of 76

Oct. 6, 2015

U.S. Patent

43

i€

Ll

g1

G

vl

¢l

ARt

bl

gzt
58]

L JBEOME .
-1 '9°Gsuun 18Q | SN 1SQ Guunisa {z€d| 26%ZvTETTTL Ze-id-1 e m»m Jaye
¢lse
IR e iy asn BLIES) BUOU
p-LiLswun [sq | LHun 18g 23un 1@ 2y VLRTe sy e 77-1¢ Buou
o 276141764 Gt
2-€ suun [5Q gHun 1583 CWNiSq | 1Y | TSRTVYTETZTL | RZ M- e | 8T L sye
7614 -1 6y Sl
9-Zsuun 15a Ziun 13d ZWN1SA | 9Id | VERY P E 2L T - | 9L L Rye
7Z-1¢
G-} suun 1SQ | Hun 13Q bHUNISA G] L ERV VLR | R Y- L vl vl ieye
B LR L OTIT Zeld-6 ey B
L€ siun 15Q guun 1sg guungsa {yiy | beeb v etz veld-l el ¢ | Jeye
7s®TrTceTIT) 22-6¢
9-¢ suun 18Q ¢HuN 180 Zuinisa {ed | VERVPLE vye-ie 8Lou
g-i siun 18Q L Hun 18Q PHUN LS | 2 | VeRY e 2L veZ-1¢ suoy
G- spun £5Q | Hun 18Q VIUNISA - | L ERL YL e T 72-1¢ 8Lou
9ce
Gv¢ abeidis gec obeicys | buissasold | ¥EL gz¢
}insal ajeipaulisiut | ped ydlels | ynses-uusiul | BWEN | ZEE Spow X3 {Q j018S 0ee uogpied eep | Buuspio yse;
yeC Ojul Jjnsel SjEIpauLIB)] 226 OJul UOINJBXd %S8)

UOREDIPUL UOISISAUOD 1RO}

‘uopiped yoes 10} ol “Ippy

‘suonnsed jo oN ‘@) e1epii] :0Z¢ ojul uoned Blep

US 9,154,298 B2

Sheet 33 of 76

Oct. 6, 2015

l result 1_2 (list of unique words |

U.S. Patent

|mmmmmmmmmmmmmm———oo _ g¢ 'Ol |mmmmmm—mmmmmmmm——mm o .
) 06 ! ! 700 06 |
x| swnsar | spowrxd |, A | Sinse | spowxa |
") jewed | 7| Ldiodes |0, | A uoned V2 ewed 1aioes |5 | z vosped
“ . °] €71 ynsa ! . ° | eep
s s ! e s |
- X o ® | sse ol ° e * eoo
[! 201 06 ! —1 ! 20t 06 ! v
- t ; ; uoiped | Al | z uomped |
= A_U synsail \ 1 spow X3 _ 1 m{:wﬂ.ﬂ ol _AH 3 /_ synsal /U Spow X3 Aﬂl [/ Eww AL
& ; fened 104o3ss | 2 ” iesued i1gpes | |
“ ! | 1 uopped ” m | uonied
wf 200 06 ,,_,\v £ 1)nsal I 701 06 ,\v elep
o) ../u.\ ST Aﬁ spowx3 | T — Ny sjinsal A spowxd |7
X {eed 1gjops | | | jerped lagjoses | !
{ Djoeqelejsuen) L yse | “ (ele[suen) ¢} Hsey “
,,,,,,,,,,,,,,,,,,,, _ TRE T
i 06 ! ! 701 06 €€ Ol
sunsas | <3| spow x3 o — 1 .| sinsas [spowx3
fenpied 1ggoes |l ;| zuoned 8 VoL ewed 1040388 z uopjed
" " " ejep g " ") ejep
® ® ! eee o m “ ® . eee
700 06 ! = 751
ﬂw%mw_ 4| spourxg \J Ncm_w_ﬁmg AJ WM m AF mww%w_e \F %%mxm Z uoiiped
ensed 1apps | o 1ep ° M_ Dl oewed |7 | 1giodes Ejep
] 1
V|) uopnsed = | | uopied
201 06 Mol Eep 8| 701 06 vyl aep
synses AW spowxa | 7 — L™ | synsas AH spow 3 { 7
1| feged Lapoes | | V| rened 1gjops | !
! T{spiomanbun Qi) Z7 1 yse ! | (Spiom-uou (}) || %Sel |

data 92

data 92

US 9,154,298 B2

result 1_7 {list of correctly translated
words)

Sheet 34 of 76

Oct. 6, 2015

result 1_6 (list of errors due to non-
words)

U.S. Patent

| l result1_4 (retraﬁ;lated data) l

prosmmmmmmsmemmms oo Zuonped 9t 514

! ot 06 N AR .
/U synses AU Spow X3 &M 5 g

L | lensed igjojes | 1 |zuomped | 425

! ® ® N S LETE I

) o o _ =3

1 ® ® I ® o=

l ! ® =

! | ® = e _______.

) \ | 1 uopped ; 207 06 z uoged

| 4] 06 'z nsa o L | sinsar | () spow 3 ¥} ynsas
(| sumsar |) spowxg | {s XI fensed 1ajoles

[| jened wapwps | T Tomed] T2 | Z uoped

— = §
' (suopejsuel} 10a100) /7| yse} | G Hynsal = : Elep
PR g ‘ ® ®
m_.nu — w @ & L]
TIREE . :

poTTT eI ' | z voned B

! ot 06 Pl gL unsal £ ! _ | uoniyed
/“u synsal 11 spow X3 &W I i /\MJ 201 06 7] ynsei

|| feed 1quotes |V [zuomed | Ayl T [T SUmse (T Spou

“ S . Vs | | B P eped 1aj0es y vopved | <

! ¢ e “ o ! (aieduwioo) 61 ¥sey ejep

| | ® e s

| - 5

! . : 1| 1 vonnsed 27

! i)) 6 ! "1 nsal 1 - S
1| sunser || spowixa “L 5 - <%

“ eped 1ajoes | | |y yogned m 2

; (Spiom-uou o} enp siose) g | yse) S AR -

]

data 92

US 9,154,298 B2

Sheet 35 of 76

Oct. 6, 2015

[result 3 (specific translated words/phrases) [

U.S. Patent

data 92

w 3 7
P—— = r E z 5 2
6¢ 9Id g 3 E 5] R E
2% 0 @ = 2 £
58 5 z 5 3 €
188 53 g 2 2% 5
wrams o 33| db|BE|db| S |db| 3 |dp(EE 4B g
~ 3 =5 =3 = S& 3
T8 i - i U m. Z
= = = = Y o
& 2 Fi 3 = =
2 @ = % &
m &
Fhz UOHBULIOJUI NSl
8¢ Ol €914
‘T | [®]! T | [®]|
; 04 — 0l

/*f siinsal AL Spowi X3 _\“ — & _r sjinsal \ | spow X3 ,\"

71 jenied 1djows)A\ Ns:o_ttmg m V0 pened "l iaoes ,7,»,\, z uoned
® ° | €Linsal £l ® ® ! Bjep
® ® H e ® ® \
® ® i soe o,] X @ e \ eoe
207 %] ! PO I -3 I ¥ % |

SHNSo; AU spow X3 /_L_% ¢t o:mbmww < 3 o /_ synsal \w: POt X3 /_7§ Ncmw_tma

b eped tapmwes | B Bl BT | ewed | 7 Lugpomwes | VL0

i i
m ' | | uonped ~E m | uoypsed
q, 2ot 06 M| €71 Insay =\ 5T 06 vyl elep
-/ | synsal AU spowxd | 7 — m ™1 synsal /\“J Spow X3 r_..w

L tened igjoses | | L1 jeiped Lgomps | |

” {soseiyd \ ; (S8SEIT/Spiom oyoads) 7 ysey |

| /Spiom oyioads petejsues) ¢ yse) " fTTTTTTTTTTTTTTTooTT

S oam v A mm o v e e mm e v e e A v e me me e L

US 9,154,298 B2

Sheet 36 of 76

Oct. 6, 2015

U.S. Patent

Yoy 'Old
9€ I X3 180
A A A
NUOROBUU0Y < | > eee ZUonosuUD < 1 > J UoPOBUU0Y < I >
GGE asuodsas | | A -
7% esucdsal . ZO¢ asuodsal —_— eloss v
uonesUaYINe 0GE 1s8nbay uonEoUBYINe 03¢ 1sanbay 1sanbal }a109s
aUop UCIBORUSYINE Suo uonesnuBLINe
auop auop A
8GE esuodsal 75t 180nbay
uchedjusijine uchesusLne
feniul
Y Y A
a1 uun Buissaocid 18
A /
0G¢ 05¢ 05¢
piomssed/aweusasn psomssed/aueuiasn piomssed/aliEUIBSN
Y \J
21 808P asn esd 21 8IA8p 88N 21 soa8p asn

US 9,154,298 B2

Sheet 37 of 76

Oct. 6, 2015

U.S. Patent

asuodse: uonesnusyine
BUOP B BAI908 [OULRLD SINDSS JBUI0 YOBS J0}

062 A

UONRLLIOM! 101088 SBPMioUl 1y} Ajus
UOLLLIOD BU L0 SUOUSAL 181205 B BAIR08I

[ouLeYd
3n0sS Jauie ay} Buizian AU UBWWOD Sy}
0} Jsenbal uopesuayine auo BupuodsaLiod
€ IndIn0 |BULIBYD BIN03S JBLJ0 YOES J0}

088 A

[RUUBYD BIN0BS IS4 Ay} Burzin
Aijus uowilod 8] 0} }senbed 181088 8y Indino

6I¢ A

83t A

UORBLLIOJU 181088 8U) LO paseq Ayue
UOWILLIOD Bu Uiim Jsenbay uoneojusyne suop
© sjeloush ‘[oUUBYD 8IN08S JBYI0 Yoes Jo}

Ao
UOWIWIOD By} 40§ 1senbai Jai0as & gjesausb

SIE A

55¢ A

LORIBUL0D
JOYI0 BU} JSAO [pUURYS 2in0as Buipuodsanos
B USIgRISo ‘UoNIsuLod JUL0 oes o)

[puLERYO
8inoas jsi ay Buizynn Alpue UOWILLOD Ay}
Lim SaBUS N1SQ Jo Aenid e sjeapuayine

203 A

79 A

UOHOBUUCT
1SH} SU} JBAO jauURYD 8inJJS 1SMY B YSige]s?

Anue ucwnod
U} 0] LUOROSUUDD JOYJ0 BUO I1SBS| 1B USHgeIse

oI A

ze A

A}US UOWIWOD B 0] UORDBULIOD 1S3 B YSigelse

T A

US 9,154,298 B2

Sheet 38 of 76

Oct. 6, 2015

U.S. Patent

Yiy old
- - _— - - - - - -0 -—= !
| e m 72 @Inpoul N1SQ |
Loy §6% 105 Jun X3 150 _ _
| i |
= — |
by 3 8 _ !
m || fiowew Riousw [T u a0y Aoy oseq "
_ . - _
M " . see - _ m “
by 88 88 _ P o e 7
— — — — !
L] ® & | 00| | 52 yun FEwn || |
by HunX3 18a Hun X3 184 _ f | uognoexs | geg | UONMOEXS | | |
m | | " 18a 18a ” “
| - Y N
b e e e e e e e e et e et e ot e e o e oo e o oo e e o oo e e e o et o oo] A |
[==i8 N}

Raanll Sl

L~} 58018 A8y aseq m m_ 8|3

21E i B

21z eee Fry

ZBE oju Aypuap] o|E =g

8= 5|8

}l/
$Z Nomau

Z6E uoyewojut Ayjuepl

96C UONEDo
afielo)s Aay aseq

¥6€ QI
uewop Alowau

> Bt ojut Ajuspl

U} S301IS Aoy aseq

gl nun
Buibeuew N1SQ

US 9,154,298 B2

Sheet 39 of 76

Oct. 6, 2015

U.S. Patent

gy 'Old
[T e e e e e e o e e o o 1
_ G Jun uognoexs 1 §Q _
“ " wompowiapisa | |
|
|] 08 Buisseoold _]
		1sapunogino “
	90 JojdAinep	
_	K b	
	l "	
_ gg fowsw	78 Buissaaoud !	
" 150 punoquy		
r—m——— - = —		
g¢ wun		9¢ Jun !
m uognaaxa	sQ _..._ uopnosxe 180	U 5% 109lq0 ejep peidhious _ i RERE .
	88 Aowoew __ a3 fiowall _	7y h
o e e S < B [HE	
A D\ T T R .	Koy oseq mmemu__m IIIIIIII	
v	feeseq ~	
g1y 159nbas fersuas ” 5% einpows	7o empow “	
v astls ey 8sEq Lo uossiacid Aay yzp keyeseq	lojesaush Aoy 7% fov _	
(¢ asuodsal peal aoys AsY aseg 1 - yy y agoads ssaooe		
C1F Qi fiey eseq 7% UOONASU)M \		
I e		
L 58 einpows Buissaoosd b1y o olyoads jusiuoo “		
01 1senbai sum Nog	57% oalo Bvep	

US 9,154,298 B2

Sheet 40 of 76

Oct. 6, 2015

U.S. Patent

oy 9Ol

ﬂssssssssssmasdommumm&wm; 3333333333 “
_ I Fonpowwapisq | |
! I , ! |
| j 08 Buisssaoud ! |
| | | 1Sapunogno " |
! | {

¢ 305 J01dhi0e }
“ 0% 108igo elep paydilous M 90 J0icho8p | !
'y |
! { N " |
| 88 Atowow “ 28 Butssencud _ !
“ M 15 punoqul !
r-———=— — o]

gwn | 9 pun _ — !
" uognoexe 1SQ | | uonnoexe 15Q | “ M #O J0jdhuoue | “

(173 <

| | 88 fiowsw = gg Aowauw | ! 7y | A _ |
_ I _ O 81y oasu m _ |

L A A L peasaoys | 00000000 —m e e -
!!!!! T T 1 85eq A ase .
| y_ | "AesE |
377 1sanbay [eAsial M 0% anpow .| Z0Fempow _
v 8015 Aoy aseq [uoisiaosd Aoy 775 Aoy aseq} Jojessusb fey 7% fio "
2% asuodsai peal 80s Aoy oseq { - 7y ayoads ssanoe |
| £V Q1 Aoy eseq 5% uoonAsul peal A |

B S - —
8E¥ asuodsal pea NS(| 54 enpow Buissenoid #1¥ Ojut ojjioads Juspied “
- e < -

e 1s9nbal peal NS(§Z¥ 109{qo ejep "

US 9,154,298 B2

Sheet 41 of 76

Oct. 6, 2015

U.S. Patent

Aoy ayroads ssaooe
au Buizyin 1senbay 888008 8U) Bunnosxs

4] A

UOBLIOJUI
oigoads JUBIL0D By} pue A8y 8SEG PaIBACsS!
8l Uo paseq Asy oyloads sseaoe Uk sjeseush

0S¥ A

Aoy sseq
B 18A0084 0 5801js A8y 8SBq JO 188 U} 8poosp

i A

Q| Aoy sseq
au Burzyan sa0ys Ay aseq jO 198 B ardual

5 A

LORBULIOM J0ads 1UBIH0D BUILLISIep

i A

Qi Aoy 8seq B suiLIB)ap

o A

1senbas 9008 ue aAwDa)

a]

US 9,154,298 B2

Sheet 42 of 76

Oct. 6, 2015

U.S. Patent

72 sinpow N1Sd

Y

$9y sinsas feiped = ——— 1 8oisp
grwun € — lasn
< Buisseooid F 1senbes R
70V syse} jenued 1sq@ yse} o/ Op ejep u
D — 79p synsas eied pl 8oihep
09 seils ejep < Jasn
S65 ot bai
sysenbal yise} Jojpue eiep peraapal 8¢ 1580
89p st lv_ } J0/DUE BIED PIIBID ” %521 1013 T e1Ep
g8 uonewuoul sdueLLopad v e
¥y synsad jensed 0P synsal jeied ¥l 20lhap
< Buisseoold 8€ 1senbay o
297 sse) feiped 1sa %58} 10/% 07 e1ep .
< — 9% synsaJ [eiued bl 82inep
09 830}|s e1ep < Jasn
8¢ 1senbai
%se} Jofg b elep

US 9,154,298 B2

Sheet 43 of 76

Oct. 6, 2015

U.S. Patent

Aus Buisssooid 1sanbas JaLpo ayy 0 Isenbal
$$9098 NS U} J0 LORDBIIPS) SJeloR)

a2y A

fnus Buissaooid 1sanbal Jayio ayy
0} BupuCUsSa1I09 [OAS] 83IN0SDE BiGRIIBAR U UO
paseq Ayus Buisssdold jgenbas JoLiouUR 10598

27 A

sapnue Buissaooud 1senbes
JoY10 Jo Ajieinid e 10 S19AS] 92IN0S8I B|GE[IRAE
SUlULLeIBP 'BjgeIoABIUN St LoSUEAWOD B} UsyM

24 A

pioysaiy
20In0Sal painbal e 0} Ajqelone; sesedwiod
[9A9] $82IN0SDL |GEJIBAR UE JOUIBUM SUILLIBIOP

oLy A

Amua Bunsanba;
£ W0k} 15anbas $59008 N1SQ € 9A808)

o 1

US 9,154,298 B2

Sheet 44 of 76

Oct. 6, 2015

U.S. Patent

Buipiingas Joj 204js Blep Pepooue oy pingad
01 8s9001d Buipjinges pejos|es sy} aleli|ioe;

98 A

[eAs] sniels AJBRUSPHUOD 80)S
au) pue Ajenuepyuod aays painbal |0 [8A3)
8l Uo paseq ss800.d Buipiingsai paseq-peal
e 10 $$9204d Buipjnges ened e 0 U0 108108

98 A

[aAR] SNIBIS AJBIUBPYUOD B3I[S B BUILISIBP

8y A

Aljeiuepyuod
8oiis paanbai JO [9A8] B BujULBlep

28y A

Buipjinged 0} 801|S E1EP PEPOOUS Ue Ajpusp!

o]

US 9,154,298 B2

Sheet 45 of 76

Oct. 6, 2015

U.S. Patent

g¥y Old
«——— PlGoRpIes e
0¢s -
Jojeatpus SIcA wm%
Aupyea anjea AuBisiu m
AuBau
pajenoies
paAaaal
06F uonouny
JNSIURLLIDIAP
— a8 | e P -
< A Jeuiquoo-ap |~ 075 sodhiosp | — §0590000p joermre
367 e1g 209 705 J—
867 I8P afexoed sbexoed 906
188 9018
Ejep aunoes
Y "Old {67 uonouny
— JNSIUKILIBIEP
008
anjea Abaul
At QBT IBPOUS e Pep toidloue e ZB¥ J8uIguion P
aoc o6y Bl
s 705 sbexoed 705 sbeyoed 867 Biep
138 80l 2iN08S ejep

US 9,154,298 B2

Sheet 46 of 76

Oct. 6, 2015

U.S. Patent

anjea Anbaju pajenojes sy pue
anen Aubajul DoAdSS BY) 4O UOSIIBAWIC) B Uo
paseq Blep paonpoidsi ay) Jo Aupiea s1eaipu

578 A

anjea Aubayul perenojea e 8onposd
O} B}Ep U} U0 UCHOUN} J1jSiLILIR)eP & wiopad

s A

anjea Aubayu ponedal e pue
EIEP 80npo:day o uonouny Buiigwod e yim
aoueploooe Ul abeyoed g1ep o4 SUIqUIO-ap

¥y Old

58018 JO
188 8y} sonpoud o) sbexoed 2indas ay} aposus

ree A

abexoed
2inoas e aanpoud o) yoeosdde uondAous sy
ym eouepuosoe ui abexoed erep sy 1dhious

4% A

yoeoudde uondAious ue
auiwislep ‘ebeyoed ejep ay; Bundious usym

0cs A

&g A

§801S j0 105 & sonpoud

0} 8bexoed elep syl sposus N

abeyoed
eiep e sonpoid o} yoeoidde uondAsous sy
yum aouepi0doe uj afeyoed ainoas sy dAosp

07 A

abeyord ainoas sy
yum pajeroosse yoeoidde uopdAious ue Auept

5% A

abeyoed
21n93s & 20NpoId 0} SBVKS JO 185 B 8p0sap

= A

8¢S

A

abexord eyep ay) 1dlious o) Jeyeum auiuslap

55 A

abeyoed eiep e sanpoud
o1 uopouny Buiguioo e ypm souepicoce
ut anfen AjuBaiu oyl pue ejep ayj augwod

24 A

anfea Aubejur ue sonpoud oy ebriois
10} B1ED U0 UOROUN} SHSILIULSISD & wiowad

= A

US 9,154,298 B2

Sheet 47 of 76

Oct. 6, 2015

U.S. Patent

SA0LS BIEP PAPASUS JO 185 BulpuodssLios
B Sapnjoul Jew S)senbs: 80KS S1LM JO 188
e ajesousb ‘seoys BIEP PEPODUS JO 18S YoRa IO}

= £

SA0IS BJBP PAPOOUS 10 S108 10 Aneinid
e aonpoud o} uoouny Buipoed Joue abelo)s
pessedsip sy Buizinn 1osloo ejep sy spoous

9 A

SHUD UOHNOSXS | S(PRIBIDOSSE 0} 51senbau
HUWHLOD jO Jaquinu BuipuodsaLniod syt Bumndine

95 A

jana} Algeas jeaatel
paJinbal sy} uo paseq uopouny Buipod Joue
ofieso)s pasiadsip auj Buizin 12800 ejep sty
Jo 3bRI0]S 40 BNJEA P|OUSAIY) S1M B SUILLIRIP

sjsanbas JuwiLo jo Jequnu Buipuodsenos
e gjesaual ‘sesucdsal 84S alm
3O Jaquunu poysasy) ajm e Buiaeoal uaym

5] A

79 A

uonouny Buipoa Jose abelos
pasiadsip e Buizimn 1sigo erep ay; jo obeio)s
10} siayeuieled jesiadsip aulaseq suWIBap

SHUN UoNNDaxXs S
10 185 8Y} WO} $85U0dSa1 80I[S SjlIM BAI808)

&5 A

5 X

122lqo BI1EP 8Y) YuM DaJRIDOSSE
[oAst Aylgeyss |easiel paunba) e suiusep

B[NPOW NLS(841 JO SHUN UOANDEXS
180 jo 1es pajeidosse e o} sysenbal aaljs
SILM 1O JSQUINY PIOYSaLL) UM & Ises| Je indino

059 A

sjnpow
NLSq e i sfiesols Joj 1o8lqo 21ep 2 aA1800)

0% A

s f

US 9,154,298 B2

Sheet 48 of 76

Oct. 6, 2015

U.S. Patent

V¥ 9ld
e |
2T SInpOUINLSA
L Emwnwweesa
w 895 895 895 [
{ | Aowsw sslfs Asowsawl a2yjs Asowsul aoijs AJoLusu agys
Y A A A
w @ a @ @
(5] < Q [}
| @ @ @ w
L s p > e
o fep] [e>] o
| 8 & & &
| @ @ & 7]
b} [+5] (15 i3]
- g 5 5
| “y °y “y Y
9¢ ¢ o¢ w
JUN LOYNOAXA | ¢ @ @ | NLM LOYNOSX3 Jun uopnoexe] $€ anpounjusia 180
i15Q 1sd 1sd |
A A A w \
bt o o o — — — — — — ot — —— — —— — — — — — —

US 9,154,298 B2

Sheet 49 of 76

Oct. 6, 2015

U.S. Patent

Buipinges
JO 9|NPaYDs ol LM SOUBPIOIOE Ul S80S BIED
papooua jo Ajesnid ay jo Buipingas alejioe]

088 A

buiddew sy} uo paseq $sals Bjep papoous Jo
Ayeinid sy} Buipjingal o 8jnpayds e suiuLalep

815 A

JIUN UolNoeXe | §Q ay 4o Buiddew
90IABP AJOWBW BOYS O} SWeY 81|S & UIRq0

20 A

$01|S Bjep pepodus jo Aeinid ay yiim
POIEIS0SSE Saliey avls Jo Aueinid e Ajijuspl

25 A

UM UONNOBXS 1S(€ 4O Jjingel
aq 0} $901jS 1B PEPOSUS jo Ajeinid e Jos18p

7 A

US 9,154,298 B2

Sheet 50 of 76

Oct. 6, 2015

U.S. Patent

snpow N1Sd
U U S901S 40 195 o) Jo abeio)s aEoe)

65

A

SO0iI$ 40 18$ & 8onpoid

0} uopouny Buipod Jous abelols pesiedsip

e Buizijiin 108[qo aBei0)s BUO BY} BPOSUS

065

A

100lgo abeiois auo sy} sonposd o) elepelaw

U] pue ejep 8y} BLIGWI0D ‘08fqo obeio)s

8UC 8Y) Se Blepejell pue ejep oY) Buuo)s usym

885

A

108{go afeio)s sUD SB BlEpEISW
pUB B1ED BU} 9.01S 0} JOUlauMm auluLsiop

985

A

Joelqo

ejep sy} 0} Buipuodsoriod eiepelpw djeioush

785

A

a|npow

NLSQ e ui abeioss Joj 198(00 Blep B 8AI80al

288

A

US 9,154,298 B2

Sheet 51 of 76

Oct. 6, 2015

U.S. Patent

. S—

V66 ejep
PaISACDS)

78 buisssooud
18Q punoqui

S 198 208

I
!
!
b
b
P ===
B S 198 1UN X3 150
I —
bbb oguun 9¢ uun
< by | UOHNOSXS | g | UOKNIOXE
Seseals | | || Lsa 1sa
N
b .
P H
I
Pl les un X3 180
R —
L1 1] §wn 9 wun
i §
< T | UON0aXa | ggq | UOINONXD
Lo M 150 1sa
P
Voo]
o
|

A

| 185 20Kis

03 buisss004d
1SQ punogjno

26 ejep

US 9,154,298 B2

Sheet 52 of 76

Oct. 6, 2015

U.S. Patent

§6G jood abeuots

uolnoaxs
184

]
|
|
|
]
|
]
|
|
|
|
|
|
|
| Gyun
f
|
|
|
]
|
]
|
|
|
|
|
|
|

|
o
” 7188 | | 1188 | | TR
| nxaisa | wnxassa ||
I | I | 1
guun | -
M wognooa | | " || T eeseRp
- N |1
| = a01s ele
“ / Jun uognoaaxa 18q | 7 Zeseep
T w -
M _ " o || | g | 80l)S Ejep
m | e] v 8915 efep | 278 40QY NS
| I | 9| SOISBIEP || £ 2 901fS BIEP | ¢ Z HAQY NS
” by || 7 2 901s Blep | ¢/ 4aav NSa
| " _ _ " | 9015 €8P | Z ¥ ¥aaY NSa
| N |
: < 11
M cowmmwxm A_, “ _ _ e 7188 80Ifs
| Ly T emn |1 |
| - -
M " " cow_wmxm m_, _ p7) eos eiep | 1} ¥adv NSQ
AT L ZLeoIseEp || ¢) eois Blep | | £ Hagvy NSd
| | voimoxa | || | | € zoouseep 7 1 9015 B8P | | £ 4aav NSa
(Ldsa |1y | L7} 001S E1ep | | 9 ¥aay NSQ
{ Ly ovsn)0
|] | uopnoaxe | | | } 198 8ols
| Im | L1450 IA_v “ 7} 8as eep

08
Buisseocoid

18d
pUnoGINo

US 9,154,298 B2

Sheet 53 of 76

Oct. 6, 2015

U.S. Patent

asy old
XYIN 8y AV
aeunud o S0 (I8 RPN
Buissaippe
: 94dav Nsd
NSQ ‘
ens \ Tons
XV XYW
8/7 Haav 9/9 yaay
ans
NS
XYW XY
8/ ¥aav ne P2EY | gns | 8/2daav
0 ¥aav XYW HOdvY
$00 uonoun; uonelsusb ssaippe NSO Q
XYIN #/2 400v3dd
009 [esymind
Buissasppe
Aseuuneid
Z sepd ¢ tejd
XV % YW
Hadv3eid % ¥Qavy3ud

| Jejpd

| HAAav NSd WiT3dd —
0 ¥aavayd 7

¥ sejid

/x<_>_ Hady3dd

|| 80ys Blep

L9 ¥aav NSd

| Bas _ v} SLIBU 80IN0S _ 0 Xapul 9913

1 f

865 ajnpow Huneisuab ssaippe

rr

| olUBU

| Bas
92in0s anbiun

o} seyd

171 ¥AaY NSA WIN3yd

|} 80ys erep

US 9,154,298 B2

Sheet 54 of 76

Oct. 6, 2015

U.S. Patent

38 Ol

800

800 Buissaippe g uoniod

7 Bes | vz sureu sainos | g xapus ays

} s | "z owieu eainos | g xepul salls

Z 8¥aav NSa

1 8 QAvNSa

z Bes | vz sweu soinos | 7 xaput oy

1 Bas | v oweu e0inos | 7 xapul 80y

Z ¥aav Nsa

L 2¥HaavNSa

z bos _ vz SWeu 99N0s _ / Xapui 82Iis

| Bas m VY Z BUWEU 0IN0S ~ J Xapul 801js

Z 1¥0av nNsa

1~/ ¥0av NSa

Z Bas _ Y Z SulBl 900 * ¥ Xaput 80ys

{ s | g aweu s0inos | y xapul s0ls

¢ 7¥aavy NSa

| ¥ ¥OavNsa

309 Buissauppe | uondod

g Bos | v| aweu samos | | xaput oays

|, Bas m Y|, SWEU 93IN0S “ L Xapul 801iS

Z 1 ¥aav nNsa

171 YAV NSa

Z Bas _ V| slBy 82in0s * / ¥aput 8oys

{ s | y™| auweu e0unos | 7 xapur s0y)s

¢ L ¥Aavy NSa

|2 ¥aavNsa

z Bos | v} aweu eoinos | ¢ xepur a0y

| Bos | ™| aleu a0inos | ¢ Xopul aogs

Z €¥aav Nsa

1 € "aavy NSa

Z bas _ VL eWeu aoInos “ 9 Xapui 8048

} B8s | ™| 8weu 20Inos | 9 xapul 89l

¢ 9¥aav NSa

| 9¥AQAvYNSa

!

!

=<} Bos _

INSOINN | piepd

7 ¥aQv NSO WIT3xd

i mwm_

ZNSOINN | £ sepd

B |

ZNSOINN | zuepd

¢ ¥0avy NSA W3dd

1 Bos _

INSOINN | 1 epd

L Z ¥0av NSa W3dd

|
|
!
|
|
€ 7 00V NSO WIT3Yd w
!
w
|
!
|
w

s

INSOINN | ¥ uepd

¥ 1 ¥AQv NSA W3dd

| Bos _

INSOINN | ¢ epd

=i mmm_

JNSOINN | Zepd

Z 1 ¥aavy NST WIT3dd

| Bas _

INSOINN | 1 epd

|
|
|
!
!
= w
€ 1 4aav NSO WIT3dd |
f
|
!
!
L1 ¥aay NSO WIM3dd M

09 uonoun; uonesaush sseippe NSQ

US 9,154,298 B2

Sheet 55 of 76

Oct. 6, 2015

U.S. Patent

| | | |
| b i
" { . “ ! | “ .
b e e e - i |
2 | eesmmaisa | Lo " M
! - t
s = o s Lo
1o] Sewn 9g Jun _ ! bt '
| w { | uopnooxe | gge | uonmosxe | | 1 1 | gZgenpow | _ b
| { 1sd 1s@ m/m " §79 Sles 901 pay f uoysod ejep P | ¢ uopod v
Iy T ~ o Bep |
§ e | ! ! i m
L zeswmasa] w “ b
iy — — by i ! !
I}] &wn gun |11 “ “ 575 ! M
| uonnoaxs UORNOBXS | Legmd — + <
_ m | _Mmm see | UOH < Tozasws o pucoes | sinpow uoniod [Tioimiod b
. 30+, ! i EJEP PUOdaS ejep X
by SR P " m
'y TTTTTTTITICOZO b P! v
by { 18s Jun X3 1SQ {1y FEaspseasjo fend | Lo
Iy i1 755 1es ooys puooss - P
" m M 5 o Gequn | 1! 1 OfGjessosisy | grgempow | _ b
| m { | UOHNOOX® | ggg | UORNOBXS ") m " $Z0 s1es sols m “ uosod elep sy |) uoipod v
Iy 1] dsa 180 | [Eiep o
Iy | | _ — _
e sl | P19 |
N B e
"~ 555 pood sbe10ys L w “ anpouw Buipoous " m Nm%
t 1.
| Vo B, " [08 Buisseooid | g punogino vy sm_m
el e e e e e e e e e e e e o |—
" HINSd ! ~ 019 soinap Bugndwoo |
|||||||||||||||| L N A A

US 9,154,298 B2

Sheet 56 of 76

Oct. 6, 2015

U.S. Patent

y o

vopiod piy 1

.
>

S[UN BDEI0}S {0 185 pUoo8s ay)
0] SA0KS BJ2p PAPOSLS J0 }8S PUODSS 8L puss

28] A

$85S81PPE NS(JO 188 PU0ISS B 8)eIausb

2] A

Sa0I|S EJED PAPORUS {0 19S puUoDas
e sonpoud 0] uoiod elep puUCIsS 8y} BpoIULD

013

SHUR SPEIOIS 10 188 puUOJas au) 0] Seoljs Bjep
— pPapOoLB JO SJ8S BI0L IO BUO PUODAS Y} PUSS

599 A

syun abeIo}s J0 195 pUCOss & Ajuspl

599 A

59558Jppe
NS({0 S}OS 810U 0 8UO Puoas e sjelsuab

799 A

SB0IjS JO S198 810t 10 8UO PU0IBS
sonpodd o} uoipod ejep puooss auj spoous

2% A

A

198
aibuis

S}oS 8J0uW 10 BUO

S E1Ep 84} JO sllel € 0}

SaLLEL 80IN0S BNbIUN PUOJSS PU. ISIY Y YUI|

099 A

UoIlIod BJED puooes

> 0} swieu 92in0s anbiun puooes e ubisse

[e=)

8% A

syun abesols
1O }8S ISl BY] 0] S80S 40 18S 544 8y} puss

568 A

O
(=}

$88S8IPPE NS(J0 188 18h B ajeiaush

759 A

SEOHS JO 195
18411 B 8onpoud o} uoisod ejep 1Sk 9y} 8poous
259 A

- SHUR SDBI0LS 10 185

1541} 9U} 0} S90S JO S}8S SIOW IO U0 BU} puas

059 A

_ syun aBeioys jo Jos 184 € Ausp!

&7 A

_ $9888IpPE NG(J 10 5}9S alowl Jo auo sjessuab

5% A

Sa0IS JO $19S AI0W
10 8uo 8onposd 0 uomod Bjep 1811 sy} apoous

I) T eeeaa—— obuis

©1Ep ISH} 0] SWEU 204n0S anbiun jsui & ubisse

50 A s185 80lS

108

suoiod
e1ep Jo Alijenid e olut aji} BIED B 3pOOUa

7 A

> Y

sjuswbas
jo Ayeinid

US 9,154,298 B2

Sheet 57 of 76

Oct. 6, 2015

U.S. Patent

spun aBeI0S JO 188 18I 8Y) 0] SA0YS Elep
PBPOOLS JO SI9S SIOL JO SUO P} U} pUSS

269 A

aleu
904N0S anbiun JsJi oL} U paseq sessaippe
NSQ 10 S}8S 2J0W 10 8UO Py} i} 8jeiousd

069 A

$891|S BIEP PAPOUS [0 SJ6S SI0UL JO SUO PAY)
ay; 2onpo.d 0} UoIIOd Bjep DAL aul 2podus

819 A

uogiod ejep
P41 84} 0} sweu 52in0s anbiun 181y sy ubisse

589 A

spun oBei0)s J0 195 PAY) 84} 0} SIS BIED
DAPOOLS JO S)9S 0L 0 BUO DAY} AU} PUSS

789 A

s)un abelols Jo 198 paul e Anuspt

4% A

Blwel
804N0S SNDIIN PJIY} B} UC Paseq sassaippe
NS JO SI98 8I0W 40 BUO phY) B sjeiauab

089 A

SS0HS Blep PApOIUS SO S19S SI0W 10 AU
pay) e donpold 0} uoiod Blep pAL Syl Spodus

519 A

uonJod ejep
DAY 8L} O} aWeu 82inos snbrin piy e ubisse

579 A

syun abeio)s Jo 103 154}

N
N

sjun ofelols Jo 19S puy}

US 9,154,298 B2

Sheet 58 of 76

Oct. 6, 2015

U.S. Patent

spun abeiols J0 18S 1841 8 0}
S30U|S BIBP PAP02US JO $385 J0 Ayelnid auj puss

(e o]
.

v A

dUJeU 92In0S ahbjun 1811} U} U0 paseq
$9553JpPE NS(10 8185 jo Aleinid e sjessush

[(=}
M~

_ A

S834S
BJEp Papoaus o sies 1o Ajernid e sonpoud
0} S29YS BIEp Papoous Jo Ayjeinid 8y} apoous

mi A

sjuawbas egjep popodte
10 Ayeinyd e ojur uogiod elep 14y 8y} 8podus

Ay A

SHUN BDEIO]S J0 185 15.1] B
O} S301|S B12p PAPOOLS JO 19S PUODIS BL] PUSS

2 A

SWEL 80JN0S SNBIUN 1511} 843 L0 Paseq
$9SSaIpPR NS(10 18S Puoses e sjeseush

801 A

SB01jS BJEp PapoDua JO 188 pucoss
e sonpoud 0} Justubes BjEp PUODSS 8L 3PS

501 A

uawibas eyep puooss
B 0} 8ilfeU 901n0s anbiun 18y sy ubisse

70 A

s)iun sbeio)s j0 195 1S4}
8L} 0} S80S Bjep PBPOIUS J0 188 JSIl 8U} puss

QL A

BUIEU 50In0S enbiun JSij o)
U0 PISEY SBSSBIPPE NS(10 188 11y & ajeioual

00z A

S801jS B1ep pepoaus Jo 1as
1841) & aonpoud o} Justibas Blep 1sIl 8y} epooua

569 A

Juatubas ejep
1844 & 0] sweu a2nos anbiun 18y oy ubisse

569 A

sjuswbhas ejep
0 Ayjeinid e ol uopdod ejep 1Sy Suy splAp
¥69 A
7N
sjuswbas eep papoous G sjuswwbes ejep

US 9,154,298 B2

Sheet 59 of 76

Oct. 6, 2015

U.S. Patent

A7
8inpow N1sd

€

07 S90S elep o s1es

0c/ Aowaw
Juawbas
yoyej-eud

Y21 $19S Jsonbal 821s elep

#¢ anpow
sio 1S3

|
| —
— > | 90IAap
A_ g2/ eep P
_ Zel 1senbeu
| eyep pojuy
,
|
|
| :
| ®
|
|
|
" — > §| 80IABD
< Wmmﬂmo Jasn
Zel 1senbai
" ejep peji

US 9,154,298 B2

Sheet 60 of 76

Oct. 6, 2015

U.S. Patent

Aue Bugsenbal ay)
0} syuswibas ejep Jo Jaquinu yoejeld ayy Indino

88 A

sjuswbas
Blep jo fequinu yoisyaLd sy} ai01s Ajueroduis)

%L A

snpow N1SQ € woy sjuswhss ejep
10 Jaquinu yoiejeud ey Jo [eAsIBl sjejio.]

el A

{eAsisal Joj
sjuswibas ejep jo sequinu yojeleld & aujwslep

43 A

Apus
Bunsenbal B woyj 1senbas e1ep pajiwi| e sl

7 A

US 9,154,298 B2

Sheet 61 of 76

Oct. 6, 2015

U.S. Patent

V05 "Old

gg 1un uognoexs §gQ

88
Aowsaw 8o1js
A
saolis
Y
V€ ainpou Jusio 187
A A A
\4 Y Y
Zeooeielll | pee 2 Soepslul ¢€ aoepsiUl
A A A
27 seols 21 seoys Z¥Z s8oKs
r—---- -"—-—"""—""—"-"-"¥_ —"—— -/ -7 - — 7
Y Y Y
Z€ soepvuL see Z¢ soepaul 2% aoeLio

&

) &

£ sinpow jusip 1A

g1 nun Buisseooid 150

US 9,154,298 B2

Sheet 62 of 76

Oct. 6, 2015

U.S. Patent

JIUN UORNOBX8 | S 8Y} SSSITE 0} LIONOBUL0D
au0 JSe) Je 8y} Jo uoyezijn sleyoe)

&1 A

JUn uopnoexs 1 sQ
ay Buissaooe Joddns 0} SUOHIBULICD BI0W
JO OM} 8U} JO LUOROBUUOD BUO 1SE3| e 108}9S

052 A

JIUN UORNOBX8 | S BY} SSBO0E 0} SUILLIBIEP

2 A

SUOI0AULIOD BOLU JO OM] BU] JO YoBa
01 spsefias Yum Loiewolul souBLLIoped UrRIqo

Iz A

JIUN UOIINO8Xa
1S B 0} SUOROSULOD 2J0W JO OM] USHQelse

7 A

US 9,154,298 B2

Sheet 63 of 76

Oct. 6, 2015

U.S. Patent

Yis '9ld
29/
ewbss
glEp

[RAJSIUI BN IS

JUSUIRUUURUUUS UUUU TN SUUUN SUUU UUUI UUUR IUUUS U UUUI U SUUUS UUU ORI S

2 ainpout (N1S() Homau yse)
lopg abielols panqusip

UoNN3axXs 1Sa uonnosxa {SQg

¢ yun cee g% pun

35/ saois

AJBIUE BUK) DUZ

99/ seays

¥97 ejep ajum

{eALBIUL LY. PiE

_\
_)

LI
\wl

m\
i

lm
\m

-
<

lensajul swl YU
~

(1]

uoinod ejep sy

uoned eiep puz

uood ejep pig

uomod eep

/I (%7 8 eiep abug

US 9,154,298 B2

Sheet 64 of 76

Oct. 6, 2015

U.S. Patent

yax
424
yEX
¥Zx
1454

£eX
4704
2EX
€eX
EiX

A%y ¢
X
X
X
(454

bGX
X
LEX
beX
WX

D~

Z2ia 1a 0id 6d
gd 440 90 <
¥a €d 20 id

(@

olg Ol

<z

gis "old

3) xuew

wﬁ o @- wh 0 Q*W
e XUIBW popoo §= « Xijew e1ep B

0 0 £ X o
® T O e &

+

A < /] lequinu
uipoous « Buipoo Jokie

[<—x —]

N 897 Jsquinu

PIOYSaUL] 8p0Iap

zawo | | 1adpoq

i _ 757 uswbos ejep

US 9,154,298 B2

Sheet 65 of 76

Oct. 6, 2015

U.S. Patent

PIX
204
424
yEX
yex
1454

£9X
£6X
424
ZEX
€ex
ELX

29X 19X
14 QI3 4
X X
ZiX 1eX
ZZxX 1eX =
X X

G 801IS BJEp papodLe

{ 80IjS BJEp Papodu

€ 80IIS BIED PBPOOLS

7 801|S BIEp Papoous

|, 80IjS BJEp PApoUR

Zia 11a 0ia 6d !

80 /0 90 SQ X | !
ya €0 Za L0 g

£2 O & x o O

© T - £ o

US 9,154,298 B2

Sheet 66 of 76

Oct. 6, 2015

916 'O14
{eABIUI BRIl [BAIBIU [eABjul [eassiul {BABIU
swh st sl pug sy pig swh Uy Wl Uig swn yig
17 suiy »
O=# OpO0BD | $=H#OpO0SP | C=HOPOOIP | C=#OpO0Bp | p=#opoosp | C=# 2POOP
G=# 9POJUS | p=#OPOOUS | G=#opooUe | Q=#Opoous | g=#opodous | G=# BpodJUs
po——
Y, \
\
877 siepweled \\

Buipooua
1048 8 [efin

U.S. Patent

777 obues
souewscpad ! .
B)LIM palsap 577 soueuopad 087 sisewered 7

Buissanoid ayum Buipoous Joue g palsnipe

US 9,154,298 B2

Sheet 67 of 76

Oct. 6, 2015

U.S. Patent

jeAsBIUl
sl isy

£=# apoosp
G=# SpOSUS

98l
abueyo ou

NI
awpist

£=# ap00ap
G=# 8POOUS

[eAsSIUl
sl pug

=4 8pooep
G=i# 9posuUs

887 8oljs
fouepunpsl
e ppe

[BAJSIUI
Wi pug

g=# 9p0I3P
p=# SpOOLD

HiG Old
[eAByU [eABiU
s pie swill Wy
C=#8p00AD | = 5POOAD
G=#98pO0Us | G=# 9poous
- 064
938. 801}s Aouepunps)

abueyo ou

e A0

|BAIB}UI
ol yig

£=4 8p00BP
G=# 8pooUS

6L
apooua-al

IR

{erBIUl
suwiy piIg

£=# 9poDBP
G=# 8poOUS

N
Wi Uiy

g=# 9pOIBP
9=# 9pOOLS

{eABIUl
W YiIg

=4 9p0OBP
g=# 8pooUs

[eAS LS
suin yig

¢=# 9poJap
G=# 9poous

98z
abueyo ou

[eAIR)U
aun yig

g=# 9pOIBD
G=# 9pOOLS

oL ot
ejep sbig
jo abeiols
pazijewou

78] paiois
se 9|y
gjep abip|

US 9,154,298 B2

Sheet 68 of 76

Oct. 6, 2015

U.S. Patent

27
wawbes
ejep

¢ inpow (N £SQ) Yomau yse)
1073 abeojs paynguisip

uonnoaxs s

¢ wun

9¢ Jun
uoinosxs 1 8g

fn o e e e - - — — v

3G/ soois

6/ €lep peal

feAsS)U; S pig

feAlslul swl is|
- i

AJSYUL B pUgZ

E >
< <

(w
i

89/ seois

[easojul sl Ylu

»a (“
.o _

uondod eyep st

woipiod eep puz

uoniod erep pig

uoiod elep Yy

K {97 ajy eiep abie|

US 9,154,298 B2

Sheet 69 of 76

Oct. 6, 2015

U.S. Patent

¢ll 8wy

867 obuel
aouewoped
peas palisep

j0dJay} uopod Jo
a|ly eyep abie; pesl

joauayy uoiod o
oy eiep obie| peas

joaJtayy uondod 1o
ayy eyep obie| pess

g Old
pess yiu peal pig peas pugz peaslsy
961 961 961 9.

jo8i01 uood Jo
ajl eyep abig| pee.

008 soueunopad
Buisse00.d pesl

US 9,154,298 B2

Sheet 70 of 76

Oct. 6, 2015

U.S. Patent

Ll s

867 obues
gouewiopad
peas paiissp

-

NG Ol

T

96/ loaiey) uoiiod Jo sy eiep abise| peal

008 soueunousd
Buissaooid pesi

US 9,154,298 B2

Sheet 71 of 76

Oct. 6, 2015

U.S. Patent

[erssiul
W Is|

O=# 8POOSP
G=4# 8pOoUS

081
abueyo ou

fensalul
Su) pug

C=# BPOSAD
=4 BPOSUS

067
2045 AOUBPUNDSS
B 8A0Lal

fersajul
awn pig

£=4 8p0OJAP
G=# 8p0OUA

981
abueys ou

IR

jeABul
swip 18},

£=# apooep
Gt 8pOSUS

[eABIul
aw pug

=4t 8p0D8D
G=# 8pOJUS

[eAsolu
ouly pig

£=f 8p0dep
G=# 8pooLe

[eAISIU
awil Yy

€= 8p0O3P
Q=# 8pOUS

887 8o1is
fouepunpal
e ppe

/

[eAJSIL
Wl Uiy

€= 9p03p
G=# 8pOsUS

feAIsIU
awn yig

=4 8p0OOBP
g=# 800U

6L
2pOoUe-8l
o
|
|
[BAJBIUI
swn Lig

£=# 8poosp
G=# 8pOOUS

fenisu
aui yig

=4 8p0OSp
G=# 8pOJUD

981
abueyo ou

f

[eAsolu
|swn g

¢=# 8p008p
G=# 8pOoUs

208
ol elep
able| jo
Buipoous
abueyo

P81 ol
ejep abug)
J0 abeloys
poZIBULIOU

US 9,154,298 B2

Sheet 72 of 76

Oct. 6, 2015

U.S. Patent

JEAISYUI
aum sy

£=4 8p00ap
Q= BPOOUS

887 8018
Aouepunpai

e ppe

jRAIRIUI
Suwi isy

£=4 9P0OISP
G=# 9p0o2UD

[eAsRIU
awp puz

£=# 9p0dsp
G=# BpOOLD

287 2018
Aouepunpas
B ppe

[BAJB)US
Bl pug

£=# 8p0oosp
y=# apodua

[eAJoUl
o pig

£=# 800D
G=# apoous

98!
sbueyo ou

{eAsaIUl
auil pig

=4 8p0ODEP
G=# 8pOdUD

{eAIR)L
swi Yy

f=# 9p028p
9=# 9pOOUD

261
aposua-al

feABUl

i iy

£=4 9pOOSP
O=f 9p0OUS

|BAIBYUI
sf yig

=4 8pCosp
g=# 8poOUS

987
abueyo ou

I

SR Yig

= 8pOTSP
g=# 9pOOUS

jenigIul
oW Uig

£=# 8p008p
9=# 8pooUs

387 2018
fouepunpai
e ppe

{ersa)Ul
U} Uig

S=# 8PONEP
G=# 8POIUS

7z
2|y e1ep
afig) jo
Butposus
abueyo

287 paios
SE 8jl}
ejep ofiig}

US 9,154,298 B2

Sheet 73 of 76

Oct. 6, 2015

U.S. Patent

NLS Ol
llllllll - - - T T T T T T T
| V or T T T T T T T v
_ P! Fgbuisseoaid [Sg punagal “ “ |
718 yun | L — Lo
abeiois s T ves | -
_ 774 sisenbal siepdn ' “ _ | amnpow Bupess " n : %\m
308 i I
_ 873 sesuodses peal | " _r | “ | uopiod
e i T < | eweep
® _ T Lo abug|
| Lobo o
P18 uun _ ! “ “ Lo |
abeso)s < __ L+ L 30 77gonpowbugsnipe e ol
| 328 3018 P o Lol
I
_ b 25 oy mwcz,) 758 sisjewesed Lol
prgwn || Lo . paisnipey o
abeios _ - J S bl
_ 268 SHOY Blm Loy 028 ainpow Buuois | ¢ | by
& e 3 ! : I { "
578 wn _ €S sisanbas ajum m “ i X 578 " “ ,
abeso _ | ! " &5 B | sigjaweied | 4
I8 | L 328 a1y eiep abiey e b |
i e l
_ b — oy
_ by 38 o
578 wun _ . ! sinpow Buysebus |~ C T 573
obeso)s _ ! b _ o | aperep
_ [yt B8 Buisseooid 1 g punogIno LU b
| | R
B | - 918 ampouw Sq)|
ZINSA | “ e e e e . M
I

US 9,154,298 B2

Sheet 74 of 76

Oct. 6, 2015

U.S. Patent

EEITEIE |
pajsnipe paseg-pesai ay Buisn abeloys sjepdn

988 A

sisjatleled §Q ey} paisnipe
paseq-pea. aonpoid o jsnipe ‘Bunsnipe usum

788 A

sipjelueled g(] 1snipe 0}
Joyaym suiLialep ‘BuIpes) S|GBIONBIUN LBUM

238 A

_ Buipeas ayj jo soueuwnopad pess Jojuow

088 A

| oy eyep abie| ay} o uoniod e peas

818 A

_ sialewesed g azijewitou Buisn afelols siepdn _

918 A

_ siojewesed §Q szyjpwiou ‘BUIZBULIOY Ut

Vi A

_ sivjewered SO aZIBULICU O} JOUSUM SUILLBISP _

s A

sisjoweled g
paisnipesi sonpoud 0} siejewesed gq paisnipe

U1 1snipe 'BuLm pUOSaS BJJEI0ARIUN LBLM

A

Lo o}

0L
_ Bunum puooas jo Buisssooid JopUOW

A

NS @U} 0) S891jS pUCIBS BU} BIM

[~ 00
3
[se]

«©|
0|

998 A

SODYS PU0das 8y] 80NpoId 0} sisjsuleed
S pajsnipe ay Butsn uoijiod puodas B Spodus

798 A

sigjaulieled g(J paisnipe
eonpoud 0 siepweied §Q iUl Isnipe

2% A
_ Buium sjgRIoABIUN BLILLISIED
098 A
_ Bunum 1814 Jo Buissasold tojuou
858 A
_ NSQ € 0} Sa0I|s 154 8] ojlim
958 A

S901IS 151 9ONP0IC 0 siBleweled
Sa e sy Buisn uotpod 184y B 8podUs

78 A

_ sisjatueled g feniul suWIsIep

&58 A

~ o}y B1ep oblg| B ‘aL JBAO ‘BAIS08)

=]

US 9,154,298 B2

Sheet 75 of 76

Oct. 6, 2015

U.S. Patent

806 anjeubis JoquBlau puooes

906 aimeubis Joqubiau 15y
6661-0091 6651-00¥1 86£1-0004 £661-0001
869 969 768 e
abue. ssaippe | sbues sseuppe | obuel ssaippe ¢68 abues
ssalppe ay)is
SNNXF LSA | cHun X3 1SA | | Hun X3 18d
$06 dew efieiols pejepdn
6661-0094 6651-00¢} 8621-0001 666L-0001
868 968 68 577
aBues ssaippe | ebues ssaippe | abues sssippe 268 9buel
SSaIPPE 2lis
cNNYF LSA | ZIun X3 1S | L wunXd 1sd
706 dew sbeiois snoinaid

008 abeyoed uoneosyipow dew abeiois

6661-0094 6651-00¢} 8621-0001 6661-0001
863 968 68 577
abues ssatppe | ebues ssaippe | sbues sssippe 268 obues
SSRUpPE 8IS
ENNXF18A | ZWunXF 1Sq | | wunXd 1sd

068 dew afeicss e

US 9,154,298 B2

Sheet 76 of 76

Oct. 6, 2015

U.S. Patent

afexoed uoneoLipow
dew sbeiois paubis Ajn} sy ysgnd

78 A

abeyoed uopeayipows
dew abe.ois paubis Ajjny e aonpoud
0} sbeyoed uogesipow dew abelols auy
0} SHUN X3 15 jusoelpe jo sted ay} Jo Jun X3
1580 yoee wioy sinteubis e Buiyoeye sleoe)

443 A

dew ebeiols psiepdn
sy} pue dew abe:0ls snoiazid B Sapnjoul jey]
abexyoed uogeayipow dew sbeiols & ejelousb

028 A

aieiBiw o} s804s
sy uo paseq dew sbeiols psjepdn ue sjeicust

78 A

ayeibi 0} 8048 ay) BuneBiw ajep0e)

<
owed
(=]

A

oreBilu 0] S891|S 199(95 ‘POLLISA LBUM

<t
-
o

A

LIOJBULIOJUI LOHBZYAN
uotuedwod Lo paseq siun X3 1S weefpe
10 1ed ay} JO UOHEBLLIOMIE UOREZHIN AJLiaA

N
-
(=2

A

Jejjid uoWwWoD & JO SHUN X3 180 jueoelpe
10 Jgd & o UORBWOIUI UoHBZIN UIelgo

o A

US 9,154,298 B2

1
SECURELY STORING DATA IN A DISPERSED
STORAGE NETWORK

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility patent application claims priority
pursuant to 35 U.S.C. §119(e) to the following U.S. Provi-
sional patent application which is hereby incorporated herein
by reference in its entirety and made part of the present U.S.
Utility patent application for all purposes:

1. U.S. Provisional Application Ser. No. 61/696,018,
entitled “AUTHORIZING ACCESS TO A DISTRIBUTED
STORAGE AND TASK NETWORK,”, filed Aug. 31, 2012.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computer networks and
more particularly to dispersed storage of data and distributed
task processing of data.

2. Description of Related Art

Computing devices are known to communicate data, pro-
cess data, and/or store data. Such computing devices range
from wireless smart phones, laptops, tablets, personal com-
puters (PC), work stations, and video game devices, to data
centers that support millions of web searches, stock trades, or
on-line purchases every day. In general, a computing device
includes a central processing unit (CPU), a memory system,
user input/output interfaces, peripheral device interfaces, and
an interconnecting bus structure.

As is further known, a computer may effectively extend its
CPU by using “cloud computing” to perform one or more
computing functions (e.g., a service, an application, an algo-
rithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an open
source software framework that supports distributed applica-
tions enabling application execution by thousands of comput-
ers.

In addition to cloud computing, a computer may use “cloud
storage” as part of its memory system. As is known, cloud
storage enables a user, via its computer, to store files, appli-
cations, etc. on an Internet storage system. The Internet stor-
age system may include a RAID (redundant array of indepen-
dent disks) system and/or a dispersed storage system that uses
an error correction scheme to encode data for storage.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a distributed computing system in accordance with the
present invention;

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present invention;

FIG. 3 is a diagram of an example of a distributed storage
and task processing in accordance with the present invention;

FIG. 4 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) processing
in accordance with the present invention;

FIG. 5 is a logic diagram of an example of a method for
outbound DST processing in accordance with the present
invention;

FIG. 6 is a schematic block diagram of an embodiment of
a dispersed error encoding in accordance with the present
invention;

FIG. 7 is a diagram of an example of a segment processing
of'the dispersed error encoding in accordance with the present
invention;

FIG. 8 is a diagram of an example of error encoding and
slicing processing of the dispersed error encoding in accor-
dance with the present invention;

FIG. 9 is a diagram of an example of grouping selection
processing of the outbound DST processing in accordance
with the present invention;

FIG. 10 is a diagram of an example of converting data into
slice groups in accordance with the present invention;

FIG. 11 is a schematic block diagram of an embodiment of
a DST execution unit in accordance with the present inven-
tion;

FIG. 12 is a schematic block diagram of an example of
operation of a DST execution unit in accordance with the
present invention;

FIG. 13 is a schematic block diagram of an embodiment of
an inbound distributed storage and/or task (DST) processing
in accordance with the present invention;

FIG. 14 is a logic diagram of an example of a method for
inbound DST processing in accordance with the present
invention;

FIG. 15 is a diagram of an example of de-grouping selec-
tion processing of the inbound DST processing in accordance
with the present invention;

FIG. 16 is a schematic block diagram of an embodiment of
a dispersed error decoding in accordance with the present
invention;

FIG. 17 is a diagram of an example of de-slicing and error
decoding processing of the dispersed error decoding in accor-
dance with the present invention;

FIG. 18 is a diagram of an example of a de-segment pro-
cessing of the dispersed error decoding in accordance with
the present invention;

FIG. 19 is a diagram of an example of converting slice
groups into data in accordance with the present invention;

FIG. 20 is a diagram of an example of a distributed storage
within the distributed computing system in accordance with
the present invention;

FIG. 21 is a schematic block diagram of an example of
operation of outbound distributed storage and/or task (DST)
processing for storing data in accordance with the present
invention;

FIG. 22 is a schematic block diagram of an example of a
dispersed error encoding for the example of FIG. 21 in accor-
dance with the present invention;

FIG. 23 is a diagram of an example of converting data into
pillar slice groups for storage in accordance with the present
invention;

FIG. 24 is a schematic block diagram of an example of a
storage operation of a DST execution unit in accordance with
the present invention;

US 9,154,298 B2

3

FIG. 25 is a schematic block diagram of an example of
operation of inbound distributed storage and/or task (DST)
processing for retrieving dispersed error encoded data in
accordance with the present invention;

FIG. 26 is a schematic block diagram of an example of a
dispersed error decoding for the example of FIG. 25 in accor-
dance with the present invention;

FIG. 27 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing a plurality of data and a plurality of task codes
in accordance with the present invention;

FIG. 28 is a schematic block diagram of an example of the
distributed computing system performing tasks on stored data
in accordance with the present invention;

FIG. 29 is a schematic block diagram of an embodiment of
atask distribution module facilitating the example of FIG. 28
in accordance with the present invention;

FIG. 30is a diagram of a specific example of the distributed
computing system performing tasks on stored data in accor-
dance with the present invention;

FIG. 31 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FI1G. 30
in accordance with the present invention;

FIG. 32 is a diagram of an example of DST allocation
information for the example of FIG. 30 in accordance with the
present invention;

FIGS. 33-38 are schematic block diagrams of the DSTN
module performing the example of FIG. 30 in accordance
with the present invention;

FIG. 39 is a diagram of an example of combining result
information into final results for the example of FIG. 30 in
accordance with the present invention;

FIG. 40A is a schematic block diagram of another embodi-
ment of a distributed computing system in accordance with
the present invention;

FIG. 40B is a flowchart illustrating an example of estab-
lishing a secure connection in accordance with the present
invention;

FIG. 41A is a schematic block diagram of another embodi-
ment of a distributed computing system in accordance with
the present invention;

FIG. 41B is a schematic block diagram of another embodi-
ment of a distributed storage and task execution unit in accor-
dance with the present invention;

FIG. 41C is a schematic block diagram of another embodi-
ment of a distributed storage and task execution unit in accor-
dance with the present invention;

FIG. 41D is a flowchart illustrating an example of access-
ing secure data in accordance with the present invention;

FIG. 42A is a schematic block diagram of another embodi-
ment of a distributed computing system in accordance with
the present invention;

FIG. 42B is a flowchart illustrating an example of process-
ing a distributed storage and task network (DSTN) access
request connection in accordance with the present invention;

FIG. 43 is a flowchart illustrating an example of rebuilding
a slice in accordance with the present invention;

FIG. 44 A is a schematic block diagram of an embodiment
of a data encoding system in accordance with the present
invention;

FIG. 44B is a schematic block diagram of an embodiment
of a data decoding system in accordance with the present
invention;

FIG. 44C is aflowchart illustrating an example of encoding
data in accordance with the present invention;

15

25

30

40

45

65

4

FIG. 44D is a flowchart illustrating an example of decoding
data in accordance with the present invention;

FIG. 45 is a flowchart illustrating an example of storing
data in accordance with the present invention;

FIG. 46A is a schematic block diagram of another embodi-
ment of a distributed storage and task network (DSTN) mod-
ule in accordance with the present invention;

FIG. 46B is a flowchart illustrating an example of rebuild-
ing slices in accordance with the present invention;

FIG. 47 is a flowchart illustrating an example of storing
data and metadata in accordance with the present invention;

FIG. 48A is a schematic block diagram of an embodiment
of'a dispersed storage network system in accordance with the
present invention;

FIG. 48B is a schematic block diagram of another embodi-
ment of a dispersed storage network system in accordance
with the present invention;

FIG. 48C is a diagram illustrating an example of generating
a dispersed storage network address (DSN) from a prelimi-
nary DSN address in accordance with the present invention;

FIG. 48D is a diagram illustrating a dispersed storage
network (DSN) address generation function in accordance
with the present invention;

FIG. 48E is a diagram illustrating examples of portion
addressing in accordance with the present invention;

FIG. 48F is a schematic block diagram of another embodi-
ment of a dispersed storage network system in accordance
with the present invention;

FIGS. 48G, H, and I are flowcharts illustrating another
example of storing data in accordance with the present inven-
tion;

FIG. 49A is a schematic block diagram of another embodi-
ment of a distributed computing system in accordance with
the present invention;

FIG. 49B is a flowchart illustrating another example of
retrieving data in accordance with the present invention;

FIG. 50A is a schematic block diagram of another embodi-
ment of a distributed computing system in accordance with
the present invention;

FIG. 50B is a flowchart illustrating an example of estab-
lishing communications in accordance with the present
invention;

FIG. 51A is a diagram illustrating an example of ingesting
a large data file into a dispersed storage network (DSN) in
accordance with the present invention;

FIG. 51B is a diagram illustrating an example of encoding
a data segment into a plurality of data blocks in accordance
with the present invention;

FIG. 51C is a diagram illustrating an example of matrix
multiplication of an encoding matrix and a data matrix to
produce a coded matrix in accordance with the present inven-
tion;

FIG. 51D is a diagram illustrating an example of matrix
multiplication of an encoding matrix and a data matrix to
produce a coded matrix using initial dispersed storage error
encoding parameters in accordance with the present inven-
tion;

FIG. 51E is a diagram illustrating an example of generating
asetofencoded data slices from a coded matrix in accordance
with the present invention;

FIG. 51F is a diagram illustrating an example of matrix
multiplication of an encoding matrix and a data matrix to
produce a coded matrix using adjusted dispersed storage error
encoding parameters in accordance with the present inven-
tion;

US 9,154,298 B2

5

FIG. 51G is a timing diagram illustrating an example of
adjusting dispersed storage error encoding parameters based
on write processing performance information in accordance
with the present invention;

FIG. 51H is a diagram illustrating an example of normal-
izing dispersed storage error encoding parameters in accor-
dance with the present invention;

FIG. 511 is a diagram illustrating an example of reading a
large data file from a dispersed storage network (DSN) in
accordance with the present invention;

FIGS. 51J-K are timing diagrams illustrating examples of
adjusting dispersed storage error encoding parameters based
on read processing performance information in accordance
with the present invention;

FIGS.511L-M are diagrams illustrating examples of chang-
ing dispersed storage error encoding parameters in accor-
dance with the present invention;

FIG. 51N is a schematic block diagram of another embodi-
ment of a dispersed storage network system in accordance
with the present invention;

FIG. 510 is a flowchart illustrating an example of adjusting
dispersed storage error encoding parameters in accordance
with the present invention;

FIG. 52A is a diagram illustrating an example of an initial
storage map structure in accordance with the present inven-
tion;

FIG. 52B is a diagram illustrating an example of a storage
map modification package structure in accordance with the
present invention; and

FIG. 52C is a flowchart illustrating an example of migrat-
ing slices in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a schematic block diagram of an embodiment of
a distributed computing system 10 that includes a user device
12 and/or a user device 14, a distributed storage and/or task
(DST) processing unit 16, a distributed storage and/or task
network (DSTN) managing unit 18, a DST integrity process-
ing unit 20, and a distributed storage and/or task network
(DSTN) module 22. The components of the distributed com-
puting system 10 are coupled via a network 24, which may
include one or more wireless and/or wire lined communica-
tion systems; one or more private intranet systems and/or
public internet systems; and/or one or more local area net-
works (LAN) and/or wide area networks (WAN).

The DSTN module 22 includes a plurality of distributed
storage and/or task (DST) execution units 36 that may be
located at geographically different sites (e.g., one in Chicago,
one in Milwaukee, etc.). Each of the DST execution units is
operable to store dispersed error encoded data and/or to
execute, in a distributed manner, one or more tasks on data.
The tasks may be a simple function (e.g., a mathematical
function, a logic function, an identify function, a find func-
tion, a search engine function, a replace function, etc.), a
complex function (e.g., compression, human and/or com-
puter language translation, text-to-voice conversion, voice-
to-text conversion, etc.), multiple simple and/or complex
functions, one or more algorithms, one or more applications,
etc.

Each oftheuser devices 12-14, the DST processing unit 16,
the DSTN managing unit 18, and the DST integrity process-
ing unit 20 include a computing core 26 and may be a portable
computing device and/or a fixed computing device. A por-
table computing device may be a social networking device, a
gaming device, a cell phone, a smart phone, a personal digital
assistant, a digital music player, a digital video player, a

10

15

20

25

30

35

40

45

50

55

60

65

6

laptop computer, a handheld computer, a tablet, a video game
controller, and/or any other portable device that includes a
computing core. A fixed computing device may be a personal
computer (PC), a computer server, a cable set-top box, a
satellite receiver, a television set, a printer, a fax machine,
home entertainment equipment, a video game console, and/or
any type of home or office computing equipment. User device
12 and DST processing unit 16 are configured to include a
DST client module 34.

With respect to interfaces, each interface 30, 32, and 33
includes software and/or hardware to support one or more
communication links via the network 24 indirectly and/or
directly. For example, interfaces 30 support a communication
link (e.g., wired, wireless, direct, via a LAN, via the network
24, etc.) between user device 14 and the DST processing unit
16. As another example, interface 32 supports communica-
tion links (e.g., a wired connection, a wireless connection, a
LAN connection, and/or any other type of connection to/from
the network 24) between user device 12 and the DSTN mod-
ule 22 and between the DST processing unit 16 and the DSTN
module 22. As yet another example, interface 33 supports a
communication link for each of the DSTN managing unit 18
and DST integrity processing unit 20 to the network 24.

The distributed computing system 10 is operable to support
dispersed storage (DS) error encoded data storage and
retrieval, to support distributed task processing on received
data, and/or to support distributed task processing on stored
data. In general and with respect to DS error encoded data
storage and retrieval, the distributed computing system 10
supports three primary operations: storage management, data
storage and retrieval (an example of which will be discussed
with reference to FIGS. 20-26), and data storage integrity
verification. In accordance with these three primary func-
tions, data can be encoded, distributedly stored in physically
different locations, and subsequently retrieved in a reliable
and secure manner. Such a system is tolerant of a significant
number of failures (e.g., up to a failure level, which may be
greater than or equal to a pillar width minus a decode thresh-
old minus one) that may result from individual storage device
failures and/or network equipment failures without loss of
data and without the need for a redundant or backup copy.
Further, the system allows the data to be stored for an indefi-
nite period of time without data loss and does so in a secure
manner (e.g., the system is very resistant to attempts at hack-
ing the data).

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has data 40 to store
in the DSTN module 22, it sends the data 40 to the DST
processing unit 16 via its interface 30. The interface 30 func-
tions to mimic a conventional operating system (OS) file
system interface (e.g., network file system (NFS), flash file
system (FFS), disk file system (DFS), file transfer protocol
(FTP), web-based distributed authoring and versioning
(WebDAV), etc.) and/or a block memory interface (e.g., small
computer system interface (SCSI), internet small computer
system interface (iISCSI), etc.). In addition, the interface 30
may attach a user identification code (ID) to the data 40.

To support storage management, the DSTN managing unit
18 performs DS management services. One such DS manage-
ment service includes the DSTN managing unit 18 establish-
ing distributed data storage parameters (e.g., vault creation,
distributed storage parameters, security parameters, billing
information, user profile information, etc.) for a user device
12-14 individually or as part of a group of user devices. For
example, the DSTN managing unit 18 coordinates creation of
a vault (e.g., a virtual memory block) within memory of the

US 9,154,298 B2

7

DSTN module 22 for a user device, a group of devices, or for
public access and establishes per vault dispersed storage (DS)
error encoding parameters for a vault. The DSTN managing
unit 18 may facilitate storage of DS error encoding param-
eters for each vault of a plurality of vaults by updating registry
information for the distributed computing system 10. The
facilitating includes storing updated registry information in
one or more of the DSTN module 22, the user device 12, the
DST processing unit 16, and the DST integrity processing
unit 20.

The DS error encoding parameters (e.g. or dispersed stor-
age error coding parameters) include data segmenting infor-
mation (e.g., how many segments data (e.g., a file, a group of
files, a data block, etc.) is divided into), segment security
information (e.g., per segment encryption, compression,
integrity checksum, etc.), error coding information (e.g., pil-
lar width, decode threshold, read threshold, write threshold,
etc.), slicing information (e.g., the number of encoded data
slices that will be created for each data segment); and slice
security information (e.g., per encoded data slice encryption,
compression, integrity checksum, etc.).

The DSTN managing unit 18 creates and stores user profile
information (e.g., an access control list (ACL)) in local
memory and/or within memory of the DSTN module 22. The
user profile information includes authentication information,
permissions, and/or the security parameters. The security
parameters may include encryption/decryption scheme, one
or more encryption keys, key generation scheme, and/or data
encoding/decoding scheme.

The DSTN managing unit 18 creates billing information
for a particular user, a user group, a vault access, public vault
access, etc. For instance, the DSTN managing unit 18 tracks
the number of times a user accesses a private vault and/or
public vaults, which can be used to generate a per-access
billing information. In another instance, the DSTN managing
unit 18 tracks the amount of data stored and/or retrieved by a
user device and/or a user group, which can be used to generate
a per-data-amount billing information.

Another DS management service includes the DSTN man-
aging unit 18 performing network operations, network
administration, and/or network maintenance. Network opera-
tions includes authenticating user data allocation requests
(e.g., read and/or write requests), managing creation of
vaults, establishing authentication credentials for user
devices, adding/deleting components (e.g., user devices, DST
execution units, and/or DST processing units) from the dis-
tributed computing system 10, and/or establishing authenti-
cation credentials for DST execution units 36. Network
administration includes monitoring devices and/or units for
failures, maintaining vault information, determining device
and/or unit activation status, determining device and/or unit
loading, and/or determining any other system level operation
that affects the performance level of the system 10. Network
maintenance includes facilitating replacing, upgrading,
repairing, and/or expanding a device and/or unit of the system
10.

To support data storage integrity verification within the
distributed computing system 10, the DST integrity process-
ing unit 20 performs rebuilding of ‘bad’ or missing encoded
data slices. At a high level, the DST integrity processing unit
20 performs rebuilding by periodically attempting to retrieve/
list encoded data slices, and/or slice names of the encoded
data slices, from the DSTN module 22. For retrieved encoded
slices, they are checked for errors due to data corruption,
outdated version, etc. If a slice includes an error, it is flagged
as a ‘bad’slice. For encoded data slices that were not received
and/or not listed, they are flagged as missing slices. Bad

10

20

30

40

45

55

8

and/or missing slices are subsequently rebuilt using other
retrieved encoded data slices that are deemed to be good
slices to produce rebuilt slices. The rebuilt slices are stored in
memory of the DSTN module 22. Note that the DST integrity
processing unit 20 may be a separate unit as shown, it may be
included in the DSTN module 22, it may be included in the
DST processing unit 16, and/or distributed among the DST
execution units 36.

To support distributed task processing on received data, the
distributed computing system 10 has two primary operations:
DST (distributed storage and/or task processing) manage-
ment and DST execution on received data (an example of
which will be discussed with reference to FIGS. 3-19). With
respect to the storage portion of the DST management, the
DSTN managing unit 18 functions as previously described.
With respect to the tasking processing of the DST manage-
ment, the DSTN managing unit 18 performs distributed task
processing (DTP) management services. One such DTP man-
agement service includes the DSTN managing unit 18 estab-
lishing DTP parameters (e.g., user-vault affiliation informa-
tion, billing information, user-task information, etc.) for a
user device 12-14 individually or as part of a group of user
devices.

Another DTP management service includes the DSTN
managing unit 18 performing DTP network operations, net-
work administration (which is essentially the same as
described above), and/or network maintenance (which is
essentially the same as described above). Network operations
include, but are not limited to, authenticating user task pro-
cessing requests (e.g., valid request, valid user, etc.), authen-
ticating results and/or partial results, establishing DTP
authentication credentials for user devices, adding/deleting
components (e.g., user devices, DST execution units, and/or
DST processing units) from the distributed computing sys-
tem, and/or establishing DTP authentication credentials for
DST execution units.

To support distributed task processing on stored data, the
distributed computing system 10 has two primary operations:
DST (distributed storage and/or task) management and DST
execution on stored data. With respect to the DST execution
on stored data, if the second type of user device 14 has a task
request 38 for execution by the DSTN module 22, it sends the
task request 38 to the DST processing unit 16 via its interface
30. An example of DST execution on stored data will be
discussed in greater detail with reference to FIGS. 27-39.
With respect to the DST management, it is substantially simi-
lar to the DST management to support distributed task pro-
cessing on received data.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface module 60, at least one 1O device interface module
62, a read only memory (ROM) basic input output system
(BIOS) 64, and one or more memory interface modules. The
one or more memory interface module(s) includes one or
more of a universal serial bus (USB) interface module 66, a
host bus adapter (HBA) interface module 68, a network inter-
face module 70, a flash interface module 72, a hard drive
interface module 74, and a DSTN interface module 76.

The DSTN interface module 76 functions to mimic a con-
ventional operating system (OS) file system interface (e.g.,
network file system (NFS), flash file system (FFS), disk file
system (DFS), file transfer protocol (FTP), web-based dis-
tributed authoring and versioning (WebDAV), etc.) and/or a
block memory interface (e.g., small computer system inter-

US 9,154,298 B2

9

face (SCSI), internet small computer system interface
(iSCSI), etc.). The DSTN interface module 76 and/or the
network interface module 70 may function as the interface 30
ofthe user device 14 of FIG. 1. Further note that the IO device
interface module 62 and/or the memory interface modules
may be collectively or individually referred to as 1O ports.

FIG. 3 is a diagram of an example of the distributed com-
puting system performing a distributed storage and task pro-
cessing operation. The distributed computing system
includes a DST (distributed storage and/or task) client mod-
ule 34 (which may be in user device 12 and/or in DST pro-
cessing unit 16 of FIG. 1), a network 24, a plurality of DST
execution units 1-n that includes two or more DST execution
units 36 of FIG. 1 (which form at least a portion of DSTN
module 22 of FIG. 1), a DST managing module (not shown),
and a DST integrity verification module (not shown). The
DST client module 34 includes an outbound DST processing
section 80 and an inbound DST processing section 82. Each
of the DST execution units 1-n includes a controller 86, a
processing module 84, memory 88, a DT (distributed task)
execution module 90, and a DST client module 34.

In an example of operation, the DST client module 34
receives data 92 and one or more tasks 94 to be performed
upon the data 92. The data 92 may be of any size and of any
content, where, due to the size (e.g., greater than a few Terra-
Bytes), the content (e.g., secure data, etc.), and/or task(s)
(e.g., MIPS intensive), distributed processing of the task(s) on
the data is desired. For example, the data 92 may be one or
more digital books, a copy of a company’s emails, a large-
scale Internet search, a video security file, one or more enter-
tainment video files (e.g., television programs, movies, etc.),
data files, and/or any other large amount of data (e.g., greater
than a few Terra-Bytes).

Within the DST client module 34, the outbound DST pro-
cessing section 80 receives the data 92 and the task(s) 94. The
outbound DST processing section 80 processes the data 92 to
produce slice groupings 96. As an example of such process-
ing, the outbound DST processing section 80 partitions the
data 92 into a plurality of data partitions. For each data par-
tition, the outbound DST processing section 80 dispersed
storage (DS) error encodes the data partition to produce
encoded data slices and groups the encoded data slices into a
slice grouping 96. In addition, the outbound DST processing
section 80 partitions the task 94 into partial tasks 98, where
the number of partial tasks 98 may correspond to the number
of slice groupings 96.

The outbound DST processing section 80 then sends, via
the network 24, the slice groupings 96 and the partial tasks 98
to the DST execution units 1-n of the DSTN module 22 of
FIG. 1. For example, the outbound DST processing section 80
sends slice group 1 and partial task 1 to DST execution unit 1.
As another example, the outbound DST processing section 80
sends slice group #n and partial task #n to DST execution unit
#n.

Each DST execution unit performs its partial task 98 upon
its slice group 96 to produce partial results 102. For example,
DST execution unit #1 performs partial task #1 on slice group
#1 to produce a partial result #1, for results. As amore specific
example, slice group #1 corresponds to a data partition of a
series of digital books and the partial task #1 corresponds to
searching for specific phrases, recording where the phrase is
found, and establishing a phrase count. In this more specific
example, the partial result #1 includes information as to
where the phrase was found and includes the phrase count.

Upon completion of generating their respective partial
results 102, the DST execution units send, via the network 24,
their partial results 102 to the inbound DST processing sec-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion 82 of the DST client module 34. The inbound DST
processing section 82 processes the received partial results
102 to produce a result 104. Continuing with the specific
example of the preceding paragraph, the inbound DST pro-
cessing section 82 combines the phrase count from each of the
DST execution units 36 to produce a total phrase count. In
addition, the inbound DST processing section 82 combines
the ‘where the phrase was found’ information from each of
the DST execution units 36 within their respective data par-
titions to produce ‘where the phrase was found’ information
for the series of digital books.

In another example of operation, the DST client module 34
requests retrieval of stored data within the memory of the
DST execution units 36 (e.g., memory of the DSTN module).
In this example, the task 94 is retrieve data stored in the
memory of the DSTN module. Accordingly, the outbound
DST processing section 80 converts the task 94 into a plural-
ity of partial tasks 98 and sends the partial tasks 98 to the
respective DST execution units 1-n.

In response to the partial task 98 of retrieving stored data,
a DST execution unit 36 identifies the corresponding encoded
data slices 100 and retrieves them. For example, DST execu-
tion unit #1 receives partial task #1 and retrieves, in response
thereto, retrieved slices #1. The DST execution units 36 send
their respective retrieved slices 100 to the inbound DST pro-
cessing section 82 via the network 24.

The inbound DST processing section 82 converts the
retrieved slices 100 into data 92. For example, the inbound
DST processing section 82 de-groups the retrieved slices 100
to produce encoded slices per data partition. The inbound
DST processing section 82 then DS error decodes the
encoded slices per data partition to produce data partitions.
The inbound DST processing section 82 de-partitions the data
partitions to recapture the data 92.

FIG. 4 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) processing
section 80 of a DST client module 34 FIG. 1 coupled to a
DSTN module 22 of a FIG. 1 (e.g., a plurality of n DST
execution units 36) via a network 24. The outbound DST
processing section 80 includes a data partitioning module
110, a dispersed storage (DS) error encoding module 112, a
grouping selector module 114, a control module 116, and a
distributed task control module 118.

In an example of operation, the data partitioning module
110 partitions data 92 into a plurality of data partitions 120.
The number of partitions and the size of the partitions may be
selected by the control module 116 via control 160 based on
the data 92 (e.g., its size, its content, etc.), a corresponding
task 94 to be performed (e.g., simple, complex, single step,
multiple steps, etc.), DS encoding parameters (e.g., pillar
width, decode threshold, write threshold, segment security
parameters, slice security parameters, etc.), capabilities of the
DST execution units 36 (e.g., processing resources, availabil-
ity of processing recourses, etc.), and/or as may be inputted
by a user, system administrator, or other operator (human or
automated). For example, the data partitioning module 110
partitions the data 92 (e.g., 100 Terra-Bytes) into 100,000
data segments, each being 1 Giga-Byte in size. Alternatively,
the data partitioning module 110 partitions the data 92 into a
plurality of data segments, where some of data segments are
of a different size, are of the same size, or a combination
thereof.

The DS error encoding module 112 receives the data par-
titions 120 in a serial manner, a parallel manner, and/or a
combination thereof. For each data partition 120, the DS error
encoding module 112 DS error encodes the data partition 120
in accordance with control information 160 from the control

US 9,154,298 B2

11

module 116 to produce encoded data slices 122. The DS error
encoding includes segmenting the data partition into data
segments, segment security processing (e.g., encryption,
compression, watermarking, integrity check (e.g., CRC),
etc.), error encoding, slicing, and/or per slice security pro-
cessing (e.g., encryption, compression, watermarking, integ-
rity check (e.g., CRC), etc.). The control information 160
indicates which steps of the DS error encoding are active for
a given data partition and, for active steps, indicates the
parameters for the step. For example, the control information
160 indicates that the error encoding is active and includes
error encoding parameters (e.g., pillar width, decode thresh-
old, write threshold, read threshold, type of error encoding,
etc.).

The grouping selector module 114 groups the encoded
slices 122 of a data partition into a set of slice groupings 96.
The number of slice groupings corresponds to the number of
DST execution units 36 identified for a particular task 94. For
example, if five DST execution units 36 are identified for the
particular task 94, the grouping selector module groups the
encoded slices 122 of a data partition into five slice groupings
96. The grouping selector module 114 outputs the slice
groupings 96 to the corresponding DST execution units 36 via
the network 24.

The distributed task control module 118 receives the task
94 and converts the task 94 into a set of partial tasks 98. For
example, the distributed task control module 118 receives a
task to find where in the data (e.g., a series of books) a phrase
occurs and a total count of the phrase usage in the data. In this
example, the distributed task control module 118 replicates
the task 94 for each DST execution unit 36 to produce the
partial tasks 98. In another example, the distributed task con-
trol module 118 receives a task to find where in the data a first
phrase occurs, where in the data a second phrase occurs, and
atotal count for each phrase usage in the data. In this example,
the distributed task control module 118 generates a first set of
partial tasks 98 for finding and counting the first phase and a
second set of partial tasks for finding and counting the second
phrase. The distributed task control module 118 sends respec-
tive first and/or second partial tasks 98 to each DST execution
unit 36.

FIG. 5 is a logic diagram of an example of a method for
outbound distributed storage and task (DST) processing that
begins at step 126 where a DST client module receives data
and one or more corresponding tasks. The method continues
at step 128 where the DST client module determines a number
of DST units to support the task for one or more data parti-
tions. For example, the DST client module may determine the
number of DST units to support the task based on the size of
the data, the requested task, the content of the data, a prede-
termined number (e.g., user indicated, system administrator
determined, etc.), available DST units, capability of the DST
units, and/or any other factor regarding distributed task pro-
cessing of the data. The DST client module may select the
same DST units for each data partition, may select different
DST units for the data partitions, or a combination thereof.

The method continues at step 130 where the DST client
module determines processing parameters of the data based
on the number of DST units selected for distributed task
processing. The processing parameters include data partition-
ing information, DS encoding parameters, and/or slice group-
ing information. The data partitioning information includes a
number of data partitions, size of each data partition, and/or
organization of the data partitions (e.g., number of data
blocks in a partition, the size of the data blocks, and arrange-
ment of the data blocks). The DS encoding parameters
include segmenting information, segment security informa-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion, error encoding information (e.g., dispersed storage error
encoding function parameters including one or more of pillar
width, decode threshold, write threshold, read threshold, gen-
erator matrix), slicing information, and/or per slice security
information. The slice grouping information includes infor-
mation regarding how to arrange the encoded data slices into
groups for the selected DST units. As a specific example, if
the DST client module determines that five DST units are
needed to support the task, then it determines that the error
encoding parameters include a pillar width of five and a
decode threshold of three.

The method continues at step 132 where the DST client
module determines task partitioning information (e.g., how to
partition the tasks) based on the selected DST units and data
processing parameters. The data processing parameters
include the processing parameters and DST unit capability
information. The DST unit capability information includes
the number of DT (distributed task) execution units, execu-
tion capabilities of each DT execution unit (e.g., MIPS capa-
bilities, processing resources (e.g., quantity and capability of
microprocessors, CPUs, digital signal processors, co-proces-
sor, microcontrollers, arithmetic logic circuitry, and/or and
the other analog and/or digital processing circuitry), avail-
ability of the processing resources, memory information
(e.g., type, size, availability, etc.)), and/or any information
germane to executing one or more tasks.

The method continues at step 134 where the DST client
module processes the data in accordance with the processing
parameters to produce slice groupings. The method continues
at step 136 where the DST client module partitions the task
based on the task partitioning information to produce a set of
partial tasks. The method continues at step 138 where the
DST client module sends the slice groupings and the corre-
sponding partial tasks to respective DST units.

FIG. 6 is a schematic block diagram of an embodiment of
the dispersed storage (DS) error encoding module 112 of an
outbound distributed storage and task (DST) processing sec-
tion. The DS error encoding module 112 includes a segment
processing module 142, a segment security processing mod-
ule 144, an error encoding module 146, a slicing module 148,
and a per slice security processing module 150. Each of these
modules is coupled to a control module 116 to receive control
information 160 therefrom.

In an example of operation, the segment processing mod-
ule 142 receives a data partition 120 from a data partitioning
module and receives segmenting information as the control
information 160 from the control module 116. The segment-
ing information indicates how the segment processing mod-
ule 142 is to segment the data partition 120. For example, the
segmenting information indicates how many rows to segment
the data based on a decode threshold of an error encoding
scheme, indicates how many columns to segment the data into
based on a number and size of data blocks within the data
partition 120, and indicates how many columns to include in
a data segment 152. The segment processing module 142
segments the data 120 into data segments 152 in accordance
with the segmenting information.

The segment security processing module 144, when
enabled by the control module 116, secures the data segments
152 based on segment security information received as con-
trol information 160 from the control module 116. The seg-
ment security information includes data compression,
encryption, watermarking, integrity check (e.g., cyclic redun-
dancy check (CRC), etc.), and/or any other type of digital
security. For example, when the segment security processing
module 144 is enabled, it may compress a data segment 152,
encrypt the compressed data segment, and generate a CRC

US 9,154,298 B2

13

value for the encrypted data segment to produce a secure data
segment 154. When the segment security processing module
144 is not enabled, it passes the data segments 152 to the error
encoding module 146 or is bypassed such that the data seg-
ments 152 are provided to the error encoding module 146.

The error encoding module 146 encodes the secure data
segments 154 in accordance with error correction encoding
parameters received as control information 160 from the con-
trol module 116. The error correction encoding parameters
(e.g., also referred to as dispersed storage error coding param-
eters) include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an online coding algorithm, an
information dispersal algorithm, etc.), a pillar width, a decode
threshold, a read threshold, a write threshold, etc. For
example, the error correction encoding parameters identify a
specific error correction encoding scheme, specifies a pillar
width of five, and specifies a decode threshold of three. From
these parameters, the error encoding module 146 encodes a
data segment 154 to produce an encoded data segment 156.

The slicing module 148 slices the encoded data segment
156 in accordance with the pillar width of the error correction
encoding parameters received as control information 160. For
example, if the pillar width is five, the slicing module 148
slices an encoded data segment 156 into a set of five encoded
data slices. As such, for a plurality of encoded data segments
156 for a given data partition, the slicing module outputs a
plurality of sets of encoded data slices 158.

The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice 158 based on slice security information received as
control information 160 from the control module 116. The
slice security information includes data compression, encryp-
tion, watermarking, integrity check (e.g., CRC, etc.), and/or
any other type of digital security. For example, when the per
slice security processing module 150 is enabled, it com-
presses an encoded data slice 158, encrypts the compressed
encoded data slice, and generates a CRC value for the
encrypted encoded data slice to produce a secure encoded
data slice 122. When the per slice security processing module
150 is not enabled, it passes the encoded data slices 158 or is
bypassed such that the encoded data slices 158 are the output
of the DS error encoding module 112. Note that the control
module 116 may be omitted and each module stores its own
parameters.

FIG. 7 is a diagram of an example of a segment processing
of a dispersed storage (DS) error encoding module. In this
example, a segment processing module 142 receives a data
partition 120 that includes 45 data blocks (e.g., d1-d45),
receives segmenting information (i.e., control information
160) from a control module, and segments the data partition
120 in accordance with the control information 160 to pro-
duce data segments 152. Each data block may be of the same
size as other data blocks or of a different size. In addition, the
size of each data block may be a few bytes to megabytes of
data. As previously mentioned, the segmenting information
indicates how many rows to segment the data partition into,
indicates how many columns to segment the data partition
into, and indicates how many columns to include in a data
segment.

In this example, the decode threshold of the error encoding
scheme is three; as such the number of rows to divide the data
partition into is three. The number of columns for each row is
set to 15, which is based on the number and size of data
blocks. The data blocks of the data partition are arranged in
rows and columns in a sequential order (i.e., the first row

10

15

20

25

30

35

40

45

50

55

60

65

14

includes the first 15 data blocks; the second row includes the
second 15 data blocks; and the third row includes the last 15
data blocks).

With the data blocks arranged into the desired sequential
order, they are divided into data segments based on the seg-
menting information. In this example, the data partition is
divided into 8 data segments; the first 7 include 2 columns of
three rows and the last includes 1 column of three rows. Note
that the first row of the 8 data segments is in sequential order
of the first 15 data blocks; the second row of the 8 data
segments in sequential order of the second 15 datablocks; and
the third row of the 8 data segments in sequential order of the
last 15 data blocks. Note that the number of data blocks, the
grouping of the data blocks into segments, and size of the data
blocks may vary to accommodate the desired distributed task
processing function.

FIG. 8 is a diagram of an example of error encoding and
slicing processing of the dispersed error encoding processing
the data segments of FIG. 7. In this example, data segment 1
includes 3 rows with each row being treated as one word for
encoding. As such, data segment 1 includes three words for
encoding: word 1 including data blocks d1 and d2, word 2
including data blocks d16 and d17, and word 3 including data
blocks d31 and d32. Each of data segments 2-7 includes three
words where each word includes two data blocks. Data seg-
ment 8 includes three words where each word includes a
single data block (e.g., d15, d30, and d45).

In operation, an error encoding module 146 and a slicing
module 148 convert each data segment into a set of encoded
data slices in accordance with error correction encoding
parameters as control information 160. More specifically,
when the error correction encoding parameters indicate a
unity matrix Reed-Solomon based encoding algorithm, 5 pil-
lars, and decode threshold of 3, the first three encoded data
slices of the set of encoded data slices for a data segment are
substantially similar to the corresponding word of the data
segment. For instance, when the unity matrix Reed-Solomon
based encoding algorithm is applied to data segment 1, the
content of the first encoded data slice (DS1_d1&2) of the first
set of encoded data slices (e.g., corresponding to data seg-
ment 1) is substantially similar to content of the first word
(e.g., d1 & d2); the content of the second encoded data slice
(DS1_d16&17) of the first set of encoded data slices is sub-
stantially similar to content of the second word (e.g., d16 &
d17); and the content of the third encoded data slice
(DS1_d31&32) of the first set of encoded data slices is sub-
stantially similar to content of the third word (e.g., d31 &
d32).

The content of the fourth and fifth encoded data slices (e.g.,
ES1_1 and ES1_2) of the first set of encoded data slices
include error correction data based on the first-third words of
the first data segment. With such an encoding and slicing
scheme, retrieving any three of the five encoded data slices
allows the data segment to be accurately reconstructed.

The encoding and slicing of data segments 2-7 yield sets of
encoded data slices similar to the set of encoded data slices of
data segment 1. For instance, the content of the first encoded
data slice (DS2_d3&4) of the second set of encoded data
slices (e.g., corresponding to data segment 2) is substantially
similar to content of the first word (e.g., d3 & d4); the content
of the second encoded data slice (DS2_d18&19) of the sec-
ond set of encoded data slices is substantially similar to con-
tent of the second word (e.g., d18 & d19); and the content of
the third encoded data slice (DS2_d33&34) of the second set
of'encoded data slices is substantially similar to content of the
third word (e.g., d33 & d34). The content of the fourth and
fifth encoded data slices (e.g., ES1_1 and ES1_2) of the

US 9,154,298 B2

15

second set of encoded data slices includes error correction
databased on the first-third words of the second data segment.

FIG. 9 is a diagram of an example of grouping selection
processing of an outbound distributed storage and task (DST)
processing in accordance with group selection information as
control information 160 from a control module. Encoded
slices for data partition 122 are grouped in accordance with
the control information 160 to produce slice groupings 96. In
this example, a grouping selection module 114 organizes the
encoded data slices into five slice groupings (e.g., one for
each DST execution unit of a distributed storage and task
network (DSTN) module). As a specific example, the group-
ing selection module 114 creates a first slice grouping for a
DST execution unit #1, which includes first encoded slices of
each of the sets of encoded slices. As such, the first DST
execution unit receives encoded data slices corresponding to
data blocks 1-15 (e.g., encoded data slices of contiguous
data).

The grouping selection module 114 also creates a second
slice grouping for a DST execution unit #2, which includes
second encoded slices of each of the sets of encoded slices. As
such, the second DST execution unit receives encoded data
slices corresponding to data blocks 16-30. The grouping
selection module 114 further creates a third slice grouping for
DST execution unit #3, which includes third encoded slices of
each of the sets of encoded slices. As such, the third DST
execution unit receives encoded data slices corresponding to
data blocks 31-45.

The grouping selection module 114 creates a fourth slice
grouping for DST execution unit #4, which includes fourth
encoded slices of each of the sets of encoded slices. As such,
the fourth DST execution unit receives encoded data slices
corresponding to first error encoding information (e.g.,
encoded data slices of error coding (EC) data). The grouping
selection module 114 further creates a fifth slice grouping for
DST execution unit #5, which includes fifth encoded slices of
each of the sets of encoded slices. As such, the fifth DST
execution unit receives encoded data slices corresponding to
second error encoding information.

FIG. 10 is a diagram of an example of converting data 92
into slice groups that expands on the preceding figures. As
shown, the data 92 is partitioned in accordance with a parti-
tioning function 164 into a plurality of data partitions (1-x,
where x is an integer greater than 4). Each data partition (or
chunkset of data) is encoded and grouped into slice groupings
as previously discussed by an encoding and grouping func-
tion 166. For a given data partition, the slice groupings are
sent to distributed storage and task (DST) execution units.
From data partition to data partition, the ordering of the slice
groupings to the DST execution units may vary.

For example, the slice groupings of data partition #1 is sent
to the DST execution units such that the first DST execution
receives first encoded data slices of each of the sets of
encoded data slices, which corresponds to a first continuous
data chunk of the first data partition (e.g., refer to FIG. 9), a
second DST execution receives second encoded data slices of
each of'the sets of encoded data slices, which corresponds to
a second continuous data chunk of the first data partition, etc.

For the second data partition, the slice groupings may be
sent to the DST execution units in a different order than it was
done for the first data partition. For instance, the first slice
grouping of the second data partition (e.g., slice group 2_1)
is sent to the second DST execution unit; the second slice
grouping of the second data partition (e.g., slice group 2_ 2)
is sent to the third DST execution unit; the third slice grouping
of the second data partition (e.g., slice group 2 3) is sent to
the fourth DST execution unit; the fourth slice grouping of the

10

15

20

25

30

35

40

45

50

55

60

65

16

second data partition (e.g., slice group 2_ 4, which includes
first error coding information) is sent to the fitth DST execu-
tion unit; and the fifth slice grouping of the second data
partition (e.g., slice group 2_ 5, which includes second error
coding information) is sent to the first DST execution unit.

The pattern of sending the slice groupings to the set of DST
execution units may vary in a predicted pattern, a random
pattern, and/or a combination thereof from data partition to
data partition. In addition, from data partition to data parti-
tion, the set of DST execution units may change. For example,
for the first data partition, DST execution units 1-5 may be
used; for the second data partition, DST execution units 6-10
may be used; for the third data partition, DST execution units
3-7 may be used; etc. As is also shown, the task is divided into
partial tasks that are sent to the DST execution units in con-
junction with the slice groupings of the data partitions.

FIG. 11 is a schematic block diagram of an embodiment of
a DST (distributed storage and/or task) execution unit that
includes an interface 169, a controller 86, memory 88, one or
more DT (distributed task) execution modules 90, and a DST
client module 34. The memory 88 is of sufficient size to store
asignificant number of encoded data slices (e.g., thousands of
slices to hundreds-of-millions of slices) and may include one
or more hard drives and/or one or more solid-state memory
devices (e.g., flash memory, DRAM, etc.).

In an example of storing a slice group, the DST execution
module receives a slice grouping 96 (e.g., slice group #1) via
interface 169. The slice grouping 96 includes, per partition,
encoded data slices of contiguous data or encoded data slices
of'error coding (EC) data. For slice group #1, the DST execu-
tion module receives encoded data slices of contiguous data
for partitions #1 and #x (and potentially others between 3 and
x) and receives encoded data slices of EC data for partitions
#2 and #3 (and potentially others between 3 and x). Examples
of encoded data slices of contiguous data and encoded data
slices of error coding (EC) data are discussed with reference
to FIG. 9. The memory 88 stores the encoded data slices of
slice groupings 96 in accordance with memory control infor-
mation 174 it receives from the controller 86.

The controller 86 (e.g., a processing module, a CPU, etc.)
generates the memory control information 174 based on a
partial task(s) 98 and distributed computing information (e.g.,
user information (e.g., user ID, distributed computing per-
missions, data access permission, etc.), vault information
(e.g., virtual memory assigned to user, user group, temporary
storage for task processing, etc.), task validation information,
etc.). For example, the controller 86 interprets the partial
task(s) 98 in light of the distributed computing information to
determine whether a requestor is authorized to perform the
task 98, is authorized to access the data, and/or is authorized
to perform the task on this particular data. When the requestor
is authorized, the controller 86 determines, based on the task
98 and/or another input, whether the encoded data slices of
the slice grouping 96 are to be temporarily stored or perma-
nently stored. Based on the foregoing, the controller 86 gen-
erates the memory control information 174 to write the
encoded data slices of the slice grouping 96 into the memory
88 and to indicate whether the slice grouping 96 is perma-
nently stored or temporarily stored.

With the slice grouping 96 stored in the memory 88, the
controller 86 facilitates execution of the partial task(s) 98. In
an example, the controller 86 interprets the partial task 98 in
light of the capabilities of the DT execution module(s) 90.
The capabilities include one or more of MIPS capabilities,
processing resources (e.g., quantity and capability of micro-
processors, CPUs, digital signal processors, co-processor,
microcontrollers, arithmetic logic circuitry, and/or any other

US 9,154,298 B2

17

analog and/or digital processing circuitry), availability of the
processing resources, etc. If the controller 86 determines that
the DT execution module(s) 90 have sufficient capabilities, it
generates task control information 176.

The task control information 176 may be a generic instruc-
tion (e.g., perform the task on the stored slice grouping) or a
series of operational codes. In the former instance, the DT
execution module 90 includes a co-processor function spe-
cifically configured (fixed or programmed) to perform the
desired task 98. In the latter instance, the DT execution mod-
ule 90 includes a general processor topology where the con-
troller stores an algorithm corresponding to the particular task
98. In this instance, the controller 86 provides the operational
codes (e.g., assembly language, source code of a program-
ming language, object code, etc.) of the algorithm to the DT
execution module 90 for execution.

Depending on the nature of the task 98, the DT execution
module 90 may generate intermediate partial results 102 that
are stored in the memory 88 or in a cache memory (not shown)
within the DT execution module 90. In either case, when the
DT execution module 90 completes execution of the partial
task 98, it outputs one or more partial results 102. The partial
results 102 may also be stored in memory 88.

If, when the controller 86 is interpreting whether capabili-
ties of the DT execution module(s) 90 can support the partial
task 98, the controller 86 determines that the DT execution
module(s) 90 cannot adequately support the task 98 (e.g.,
does not have the right resources, does not have sufficient
available resources, available resources would be too slow,
etc.), it then determines whether the partial task 98 should be
fully offloaded or partially offloaded.

If the controller 86 determines that the partial task 98
should be fully offloaded, it generates DST control informa-
tion 178 and provides it to the DST client module 34. The
DST control information 178 includes the partial task 98,
memory storage information regarding the slice grouping 96,
and distribution instructions. The distribution instructions
instruct the DST client module 34 to divide the partial task 98
into sub-partial tasks 172, to divide the slice grouping 96 into
sub-slice groupings 170, and identify other DST execution
units. The DST client module 34 functions in a similar man-
ner as the DST client module 34 of FIGS. 3-10 to produce the
sub-partial tasks 172 and the sub-slice groupings 170 in
accordance with the distribution instructions.

The DST client module 34 receives DST feedback 168
(e.g., sub-partial results), via the interface 169, from the DST
execution units to which the task was offloaded. The DST
client module 34 provides the sub-partial results to the DST
execution unit, which processes the sub-partial results to pro-
duce the partial result(s) 102.

If the controller 86 determines that the partial task 98
should be partially offloaded, it determines what portion of
the task 98 and/or slice grouping 96 should be processed
locally and what should be offloaded. For the portion that is
being locally processed, the controller 86 generates task con-
trol information 176 as previously discussed. For the portion
that is being offloaded, the controller 86 generates DST con-
trol information 178 as previously discussed.

When the DST client module 34 receives DST feedback
168 (e.g., sub-partial results) from the DST executions units
to which a portion of the task was offloaded, it provides the
sub-partial results to the DT execution module 90. The DT
execution module 90 processes the sub-partial results with the
sub-partial results it created to produce the partial result(s)
102.

The memory 88 may be further utilized to retrieve one or
more of stored slices 100, stored results 104, partial results

10

15

20

25

30

35

40

45

50

55

60

65

18

102 when the DT execution module 90 stores partial results
102 and/or results 104 in the memory 88. For example, when
the partial task 98 includes a retrieval request, the controller
86 outputs the memory control 174 to the memory 88 to
facilitate retrieval of slices 100 and/or results 104.

FIG. 12 is a schematic block diagram of an example of
operation of a distributed storage and task (DST) execution
unit storing encoded data slices and executing a task thereon.
To store the encoded data slices of a partition 1 of slice
grouping 1, a controller 86 generates write commands as
memory control information 174 such that the encoded slices
are stored in desired locations (e.g., permanent or temporary)
within memory 88.

Once the encoded slices are stored, the controller 86 pro-
vides task control information 176 to a distributed task (DT)
execution module 90. As a first step executing the task in
accordance with the task control information 176, the DT
execution module 90 retrieves the encoded slices from
memory 88. The DT execution module 90 then reconstructs
contiguous data blocks of a data partition. As shown for this
example, reconstructed contiguous data blocks of data parti-
tion 1 include data blocks 1-15 (e.g., d1-d15).

With the contiguous data blocks reconstructed, the DT
execution module 90 performs the task on the reconstructed
contiguous data blocks. For example, the task may be to
search the reconstructed contiguous data blocks for a particu-
lar word or phrase, identify where in the reconstructed con-
tiguous data blocks the particular word or phrase occurred,
and/or count the occurrences of the particular word or phrase
on the reconstructed contiguous data blocks. The DST execu-
tion unit continues in a similar manner for the encoded data
slices of other partitions in slice grouping 1. Note that with
using the unity matrix error encoding scheme previously
discussed, if the encoded data slices of contiguous data are
uncorrupted, the decoding of them is a relatively straightfor-
ward process of extracting the data.

If, however, an encoded data slice of contiguous data is
corrupted (or missing), it can be rebuilt by accessing other
DST execution units that are storing the other encoded data
slices of the set of encoded data slices of the corrupted
encoded data slice. In this instance, the DST execution unit
having the corrupted encoded data slices retrieves at least
three encoded data slices (of contiguous data and of error
coding data) in the set from the other DST execution units
(recall for this example, the pillar width is 5 and the decode
threshold is 3). The DST execution unit decodes the retrieved
data slices using the DS error encoding parameters to recap-
ture the corresponding data segment. The DST execution unit
thenre-encodes the data segment using the DS error encoding
parameters to rebuild the corrupted encoded data slice. Once
the encoded data slice is rebuilt, the DST execution unit
functions as previously described.

FIG. 13 is a schematic block diagram of an embodiment of
an inbound distributed storage and/or task (DST) processing
section 82 of a DST client module coupled to DST execution
units of a distributed storage and task network (DSTN) mod-
ule via a network 24. The inbound DST processing section 82
includes a de-grouping module 180, a DS (dispersed storage)
error decoding module 182, a data de-partitioning module
184, a control module 186, and a distributed task control
module 188. Note that the control module 186 and/or the
distributed task control module 188 may be separate modules
from corresponding ones of outbound DST processing sec-
tion or may be the same modules.

In an example of operation, the DST execution units have
completed execution of corresponding partial tasks on the
corresponding slice groupings to produce partial results 102.

US 9,154,298 B2

19

The inbound DST processing section 82 receives the partial
results 102 via the distributed task control module 188. The
inbound DST processing section 82 then processes the partial
results 102 to produce a final result, or results 104. For
example, if the task was to find a specific word or phrase
within data, the partial results 102 indicate where in each of
the prescribed portions of the data the corresponding DST
execution units found the specific word or phrase. The dis-
tributed task control module 188 combines the individual
partial results 102 for the corresponding portions of the data
into a final result 104 for the data as a whole.

In another example of operation, the inbound DST process-
ing section 82 is retrieving stored data from the DST execu-
tion units (i.e., the DSTN module). In this example, the DST
execution units output encoded data slices 100 corresponding
to the data retrieval requests. The de-grouping module 180
receives retrieved slices 100 and de-groups them to produce
encoded data slices per data partition 122. The DS error
decoding module 182 decodes, in accordance with DS error
encoding parameters, the encoded data slices per data parti-
tion 122 to produce data partitions 120.

The data de-partitioning module 184 combines the data
partitions 120 into the data 92. The control module 186 con-
trols the conversion of retrieved slices 100 into the data 92
using control signals 190 to each of the modules. For instance,
the control module 186 provides de-grouping information to
the de-grouping module 180, provides the DS error encoding
parameters to the DS error decoding module 182, and pro-
vides de-partitioning information to the data de-partitioning
module 184.

FIG. 14 is a logic diagram of an example of a method that
is executable by distributed storage and task (DST) client
module regarding inbound DST processing. The method
begins at step 194 where the DST client module receives
partial results. The method continues at step 196 where the
DST client module retrieves the task corresponding to the
partial results. For example, the partial results include header
information that identifies the requesting entity, which corre-
lates to the requested task.

The method continues at step 198 where the DST client
module determines result processing information based on
the task. For example, if the task were to identify a particular
word or phrase within the data, the result processing infor-
mation would indicate to aggregate the partial results for the
corresponding portions of the data to produce the final result.
As another example, if the task were to count the occurrences
of a particular word or phrase within the data, results of
processing the information would indicate to add the partial
results to produce the final results. The method continues at
step 200 where the DST client module processes the partial
results in accordance with the result processing information
to produce the final result or results.

FIG. 15 is a diagram of an example of de-grouping selec-
tion processing of an inbound distributed storage and task
(DST) processing section of a DST client module. In general,
this is an inverse process of the grouping module of the
outbound DST processing section of FIG. 9. Accordingly, for
each data partition (e.g., partition #1), the de-grouping mod-
ule retrieves the corresponding slice grouping from the DST
execution units (EU) (e.g., DST 1-5).

As shown, DST execution unit #1 provides a first slice
grouping, which includes the first encoded slices of each of
the sets of encoded slices (e.g., encoded data slices of con-
tiguous data of data blocks 1-15); DST execution unit #2
provides a second slice grouping, which includes the second
encoded slices of each of the sets of encoded slices (e.g.,
encoded data slices of contiguous data of data blocks 16-30);

30

35

40

45

50

55

60

65

20

DST execution unit #3 provides a third slice grouping, which
includes the third encoded slices of each of the sets of
encoded slices (e.g., encoded data slices of contiguous data of
data blocks 31-45); DST execution unit #4 provides a fourth
slice grouping, which includes the fourth encoded slices of
each of the sets of encoded slices (e.g., first encoded data
slices of error coding (EC) data); and DST execution unit #5
provides a fifth slice grouping, which includes the fifth
encoded slices of each of the sets of encoded slices (e.g., first
encoded data slices of error coding (EC) data).

The de-grouping module de-groups the slice groupings
(e.g., received slices 100) using a de-grouping selector 180
controlled by a control signal 190 as shown in the example to
produce a plurality of sets of encoded data slices (e.g.,
retrieved slices for a partition into sets of slices 122). Each set
corresponding to a data segment of the data partition.

FIG. 16 is a schematic block diagram of an embodiment of
a dispersed storage (DS) error decoding module 182 of an
inbound distributed storage and task (DST) processing sec-
tion. The DS error decoding module 182 includes an inverse
per slice security processing module 202, a de-slicing module
204, an error decoding module 206, an inverse segment secu-
rity module 208, a de-segmenting processing module 210,
and a control module 186.

In an example of operation, the inverse per slice security
processing module 202, when enabled by the control module
186, unsecures each encoded data slice 122 based on slice
de-security information received as control information 190
(e.g., the compliment of the slice security information dis-
cussed with reference to FIG. 6) received from the control
module 186. The slice security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC verification, etc.), and/or any other type of
digital security. For example, when the inverse per slice secu-
rity processing module 202 is enabled, it verifies integrity
information (e.g., a CRC value) of each encoded data slice
122, it decrypts each verified encoded data slice, and decom-
presses each decrypted encoded data slice to produce slice
encoded data 158. When the inverse per slice security pro-
cessing module 202 is not enabled, it passes the encoded data
slices 122 as the sliced encoded data 158 or is bypassed such
that the retrieved encoded data slices 122 are provided as the
sliced encoded data 158.

The de-slicing module 204 de-slices the sliced encoded
data 158 into encoded data segments 156 in accordance with
a pillar width of the error correction encoding parameters
received as control information 190 from the control module
186. For example, if the pillar width is five, the de-slicing
module 204 de-slices a set of five encoded data slices into an
encoded data segment 156. The error decoding module 206
decodes the encoded data segments 156 in accordance with
error correction decoding parameters received as control
information 190 from the control module 186 to produce
secure data segments 154. The error correction decoding
parameters include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an information dispersal algo-
rithm, etc.), a pillar width, a decode threshold, a read thresh-
old, a write threshold, etc. For example, the error correction
decoding parameters identify a specific error correction
encoding scheme, specify a pillar width of five, and specify a
decode threshold of three.

The inverse segment security processing module 208,
when enabled by the control module 186, unsecures the
secured data segments 154 based on segment security infor-
mation received as control information 190 from the control
module 186. The segment security information includes data

US 9,154,298 B2

21

decompression, decryption, de-watermarking, integrity
check (e.g., CRC, etc.) verification, and/or any other type of
digital security. For example, when the inverse segment secu-
rity processing module 208 is enabled, it verifies integrity
information (e.g., a CRC value) of each secure data segment
154, it decrypts each verified secured data segment, and
decompresses each decrypted secure data segment to produce
a data segment 152. When the inverse segment security pro-
cessing module 208 is not enabled, it passes the decoded data
segment 154 as the data segment 152 or is bypassed.

The de-segment processing module 210 receives the data
segments 152 and receives de-segmenting information as
control information 190 from the control module 186. The
de-segmenting information indicates how the de-segment
processing module 210 is to de-segment the data segments
152 into a data partition 120. For example, the de-segmenting
information indicates how the rows and columns of data
segments are to be rearranged to yield the data partition 120.

FIG. 17 is a diagram of an example of de-slicing and error
decoding processing of a dispersed error decoding module. A
de-slicing module 204 receives at least a decode threshold
number of encoded data slices 158 for each data segment in
accordance with control information 190 and provides
encoded data 156. In this example, a decode threshold is
three. As such, each set of encoded data slices 158 is shown to
have three encoded data slices per data segment. The de-
slicing module 204 may receive three encoded data slices per
data segment because an associated distributed storage and
task (DST) client module requested retrieving only three
encoded data slices per segment or selected three of the
retrieved encoded data slices per data segment. As shown,
which is based on the unity matrix encoding previously dis-
cussed with reference to FIG. 8, an encoded data slice may be
a data-based encoded data slice (e.g., DS1_d1&d2) or an
error code based encoded data slice (e.g., ES3_1).

An error decoding module 206 decodes the encoded data
156 of each data segment in accordance with the error cor-
rection decoding parameters of control information 190 to
produce secured segments 154. In this example, data segment
1 includes 3 rows with each row being treated as one word for
encoding. As such, data segment 1 includes three words: word
1 including data blocks dl and d2, word 2 including data
blocks d16 and d17, and word 3 including data blocks d31 and
d32. Each of data segments 2-7 includes three words where
each word includes two data blocks. Data segment 8 includes
three words where each word includes a single data block
(e.g., d15, d30, and d45).

FIG. 18 is a diagram of an example of a de-segment pro-
cessing of an inbound distributed storage and task (DST)
processing. In this example, a de-segment processing module
210 receives data segments 152 (e.g., 1-8) and rearranges the
data blocks of the data segments into rows and columns in
accordance with de-segmenting information of control infor-
mation 190 to produce a data partition 120. Note that the
number of rows is based on the decode threshold (e.g., 3 in
this specific example) and the number of columns is based on
the number and size of the data blocks.

The de-segmenting module 210 converts the rows and col-
umns of data blocks into the data partition 120. Note that each
data block may be of the same size as other data blocks or of
a different size. In addition, the size of each data block may be
a few bytes to megabytes of data.

FIG. 19 is a diagram of an example of converting slice
groups into data 92 within an inbound distributed storage and
task (DST) processing section. As shown, the data 92 is
reconstructed from a plurality of data partitions (1-x, where x
is an integer greater than 4). Each data partition (or chunk set

10

15

20

25

30

35

40

45

50

55

60

65

22

of data) is decoded and re-grouped using a de-grouping and
decoding function 212 and a de-partition function 214 from
slice groupings as previously discussed. For a given data
partition, the slice groupings (e.g., at least a decode threshold
per data segment of encoded data slices) are received from
DST execution units. From data partition to data partition, the
ordering of the slice groupings received from the DST execu-
tion units may vary as discussed with reference to FIG. 10.

FIG. 20 is a diagram of an example of a distributed storage
and/or retrieval within the distributed computing system. The
distributed computing system includes a plurality of distrib-
uted storage and/or task (DST) processing client modules 34
(one shown) coupled to a distributed storage and/or task pro-
cessing network (DSTN) module, or multiple DSTN mod-
ules, via a network 24. The DST client module 34 includes an
outbound DST processing section 80 and an inbound DST
processing section 82. The DSTN module includes a plurality
of DST execution units. Each DST execution unit includes a
controller 86, memory 88, one or more distributed task (DT)
execution modules 90, and a DST client module 34.

In an example of data storage, the DST client module 34
has data 92 that it desires to store in the DSTN module. The
data 92 may be a file (e.g., video, audio, text, graphics, etc.),
a data object, a data block, an update to a file, an update to a
datablock, etc. In this instance, the outbound DST processing
module 80 converts the data 92 into encoded data slices 216 as
will be further described with reference to FIGS. 21-23. The
outbound DST processing module 80 sends, via the network
24, to the DST execution units for storage as further described
with reference to FIG. 24.

In an example of data retrieval, the DST client module 34
issues a retrieve request to the DST execution units for the
desired data 92. The retrieve request may address each DST
executions units storing encoded data slices of the desired
data, address a decode threshold number of DST execution
units, address a read threshold number of DST execution
units, or address some other number of DST execution units.
Inresponse to the request, each addressed DST execution unit
retrieves its encoded data slices 100 of the desired data and
sends them to the inbound DST processing section 82, via the
network 24.

When, for each data segment, the inbound DST processing
section 82 receives at least a decode threshold number of
encoded data slices 100, it converts the encoded data slices
100 into a data segment. The inbound DST processing section
82 aggregates the data segments to produce the retrieved data
92.

FIG. 21 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) processing
section 80 of a DST client module coupled to a distributed
storage and task network (DSTN) module (e.g., a plurality of
DST execution units) via a network 24. The outbound DST
processing section 80 includes a data partitioning module
110, a dispersed storage (DS) error encoding module 112, a
grouping selector module 114, a control module 116, and a
distributed task control module 118.

In an example of operation, the data partitioning module
110 is by-passed such that data 92 is provided directly to the
DS error encoding module 112. The control module 116
coordinates the by-passing of the data partitioning module
110 by outputting a bypass 220 message to the data partition-
ing module 110.

The DS error encoding module 112 receives the data 92 in
a serial manner, a parallel manner, and/or a combination
thereof. The DS error encoding module 112 DS error encodes
the data in accordance with control information 160 from the
control module 116 to produce encoded data slices 218. The

US 9,154,298 B2

23

DS error encoding includes segmenting the data 92 into data
segments, segment security processing (e.g., encryption,
compression, watermarking, integrity check (e.g., CRC,
etc.)), error encoding, slicing, and/or per slice security pro-
cessing (e.g., encryption, compression, watermarking, integ-
rity check (e.g., CRC, etc.)). The control information 160
indicates which steps of the DS error encoding are active for
the data 92 and, for active steps, indicates the parameters for
the step. For example, the control information 160 indicates
that the error encoding is active and includes error encoding
parameters (e.g., pillar width, decode threshold, write thresh-
old, read threshold, type of error encoding, etc.).

The grouping selector module 114 groups the encoded
slices 218 of the data segments into pillars of slices 216. The
number of pillars corresponds to the pillar width of the DS
error encoding parameters. In this example, the distributed
task control module 118 facilitates the storage request.

FIG. 22 is a schematic block diagram of an example of a
dispersed storage (DS) error encoding module 112 for the
example of FIG. 21. The DS error encoding module 112
includes a segment processing module 142, a segment secu-
rity processing module 144, an error encoding module 146, a
slicing module 148, and a per slice security processing mod-
ule 150. Each of these modules is coupled to a control module
116 to receive control information 160 therefrom.

In an example of operation, the segment processing mod-
ule 142 receives data 92 and receives segmenting information
as control information 160 from the control module 116. The
segmenting information indicates how the segment process-
ing module is to segment the data. For example, the segment-
ing information indicates the size of each data segment. The
segment processing module 142 segments the data 92 into
data segments 152 in accordance with the segmenting infor-
mation.

The segment security processing module 144, when
enabled by the control module 116, secures the data segments
152 based on segment security information received as con-
trol information 160 from the control module 116. The seg-
ment security information includes data compression,
encryption, watermarking, integrity check (e.g., CRC, etc.),
and/or any other type of digital security. For example, when
the segment security processing module 144 is enabled, it
compresses a data segment 152, encrypts the compressed data
segment, and generates a CRC value for the encrypted data
segment to produce a secure data segment. When the segment
security processing module 144 is not enabled, it passes the
data segments 152 to the error encoding module 146 or is
bypassed such that the data segments 152 are provided to the
error encoding module 146.

The error encoding module 146 encodes the secure data
segments in accordance with error correction encoding
parameters received as control information 160 from the con-
trol module 116. The error correction encoding parameters
include identifying an error correction encoding scheme
(e.g., forward error correction algorithm, a Reed-Solomon
based algorithm, an information dispersal algorithm, etc.), a
pillar width, a decode threshold, a read threshold, a write
threshold, etc. For example, the error correction encoding
parameters identify a specific error correction encoding
scheme, specifies a pillar width of five, and specifies a decode
threshold of three. From these parameters, the error encoding
module 146 encodes a data segment to produce an encoded
data segment.

The slicing module 148 slices the encoded data segment in
accordance with a pillar width of the error correction encod-
ing parameters. For example, if the pillar width is five, the
slicing module slices an encoded data segment into a set of

20

25

40

45

50

24

five encoded data slices. As such, for a plurality of data
segments, the slicing module 148 outputs a plurality of sets of
encoded data slices as shown within encoding and slicing
function 222 as described.

The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice based on slice security information received as
control information 160 from the control module 116. The
slice security information includes data compression, encryp-
tion, watermarking, integrity check (e.g., CRC, etc.), and/or
any other type of digital security. For example, when the per
slice security processing module 150 is enabled, it may com-
press an encoded data slice, encrypt the compressed encoded
data slice, and generate a CRC value for the encrypted
encoded data slice to produce a secure encoded data slice
tweaking. When the per slice security processing module 150
is not enabled, it passes the encoded data slices or is bypassed
such that the encoded data slices 218 are the output of the DS
error encoding module 112.

FIG. 23 is a diagram of an example of converting data 92
into pillar slice groups utilizing encoding, slicing and pillar
grouping function 224 for storage in memory of a distributed
storage and task network (DSTN) module. As previously
discussed the data 92 is encoded and sliced into a plurality of
sets of encoded data slices; one set per data segment. The
grouping selection module organizes the sets of encoded data
slices into pillars of data slices. In this example, the DS error
encoding parameters include a pillar width of 5 and a decode
threshold of 3. As such, for each data segment, 5 encoded data
slices are created.

The grouping selection module takes the first encoded data
slice of each of the sets and forms a first pillar, which may be
sent to the first DST execution unit. Similarly, the grouping
selection module creates the second pillar from the second
slices of the sets; the third pillar from the third slices of the
sets; the fourth pillar from the fourth slices of the sets; and the
fifth pillar from the fifth slices of the set.

FIG. 24 is a schematic block diagram of an embodiment of
a distributed storage and/or task (DST) execution unit that
includes an interface 169, a controller 86, memory 88, one or
more distributed task (DT) execution modules 90, and a DST
client module 34. A computing core 26 may be utilized to
implement the one or more DT execution modules 90 and the
DST client module 34. The memory 88 is of sufficient size to
store a significant number of encoded data slices (e.g., thou-
sands of slices to hundreds-of-millions of slices) and may
include one or more hard drives and/or one or more solid-state
memory devices (e.g., flash memory, DRAM, etc.).

In an example of storing a pillar of slices 216, the DST
executionunit receives, via interface 169, a pillar of slices 216
(e.g., pillar #1 slices). The memory 88 stores the encoded data
slices 216 of the pillar of slices in accordance with memory
control information 174 it receives from the controller 86.
The controller 86 (e.g., a processing module, a CPU, etc.)
generates the memory control information 174 based on dis-
tributed storage information (e.g., user information (e.g., user
1D, distributed storage permissions, data access permission,
etc.), vaultinformation (e.g., virtual memory assigned to user,
user group, etc.), etc.). Similarly, when retrieving slices, the
DST execution unit receives, via interface 169, a slice
retrieval request. The memory 88 retrieves the slice in accor-
dance with memory control information 174 it receives from
the controller 86. The memory 88 outputs the slice 100, via
the interface 169, to a requesting entity.

FIG. 25 is a schematic block diagram of an example of
operation of an inbound distributed storage and/or task (DST)
processing section 82 for retrieving dispersed error encoded

US 9,154,298 B2

25

data 92. The inbound DST processing section 82 includes a
de-grouping module 180, a dispersed storage (DS) error
decoding module 182, a data de-partitioning module 184, a
control module 186, and a distributed task control module
188. Note that the control module 186 and/or the distributed
task control module 188 may be separate modules from cor-
responding ones of an outbound DST processing section or
may be the same modules.

In an example of operation, the inbound DST processing
section 82 is retrieving stored data 92 from the DST execution
units (i.e., the DSTN module). In this example, the DST
execution units output encoded data slices corresponding to
data retrieval requests from the distributed task control mod-
ule 188. The de-grouping module 180 receives pillars of
slices 100 and de-groups them in accordance with control
information 190 from the control module 186 to produce sets
of encoded data slices 218. The DS error decoding module
182 decodes, in accordance with the DS error encoding
parameters received as control information 190 from the con-
trol module 186, each set of encoded data slices 218 to pro-
duce data segments, which are aggregated into retrieved data
92. The data de-partitioning module 184 is by-passed in this
operational mode via a bypass signal 226 of control informa-
tion 190 from the control module 186.

FIG. 26 is a schematic block diagram of an embodiment of
a dispersed storage (DS) error decoding module 182 of an
inbound distributed storage and task (DST) processing sec-
tion. The DS error decoding module 182 includes an inverse
per slice security processing module 202, a de-slicing module
204, an error decoding module 206, an inverse segment secu-
rity module 208, and a de-segmenting processing module
210. The dispersed error decoding module 182 is operable to
de-slice and decode encoded slices per data segment 218
utilizing a de-slicing and decoding function 228 to produce a
plurality of data segments that are de-segmented utilizing a
de-segment function 230 to recover data 92.

In an example of operation, the inverse per slice security
processing module 202, when enabled by the control module
186 via control information 190, unsecures each encoded data
slice 218 based on slice de-security information (e.g., the
compliment of the slice security information discussed with
reference to FIG. 6) received as control information 190 from
the control module 186. The slice de-security information
includes data decompression, decryption, de-watermarking,
integrity check (e.g., CRC verification, etc.), and/or any other
type of digital security. For example, when the inverse per
slice security processing module 202 is enabled, it verifies
integrity information (e.g., a CRC value) of each encoded
data slice 218, it decrypts each verified encoded data slice,
and decompresses each decrypted encoded data slice to pro-
duce slice encoded data. When the inverse per slice security
processing module 202 is not enabled, it passes the encoded
data slices 218 as the sliced encoded data or is bypassed such
that the retrieved encoded data slices 218 are provided as the
sliced encoded data.

The de-slicing module 204 de-slices the sliced encoded
data into encoded data segments in accordance with a pillar
width of the error correction encoding parameters received as
control information 190 from a control module 186. For
example, if the pillar width is five, the de-slicing module
de-slices a set of five encoded data slices into an encoded data
segment. Alternatively, the encoded data segment may
include just three encoded data slices (e.g., when the decode
threshold is 3).

The error decoding module 206 decodes the encoded data
segments in accordance with error correction decoding
parameters received as control information 190 from the con-

10

15

20

25

30

35

40

45

50

55

60

65

26

trol module 186 to produce secure data segments. The error
correction decoding parameters include identifying an error
correction encoding scheme (e.g., forward error correction
algorithm, a Reed-Solomon based algorithm, an information
dispersal algorithm, etc.), a pillar width, a decode threshold,
aread threshold, a write threshold, etc. For example, the error
correction decoding parameters identify a specific error cor-
rection encoding scheme, specify a pillar width of five, and
specify a decode threshold of three.

The inverse segment security processing module 208,
when enabled by the control module 186, unsecures the
secured data segments based on segment security information
received as control information 190 from the control module
186. The segment security information includes data decom-
pression, decryption, de-watermarking, integrity check (e.g.,
CRC, etc.) verification, and/or any other type of digital secu-
rity. For example, when the inverse segment security process-
ing module is enabled, it verifies integrity information (e.g., a
CRC value) of each secure data segment, it decrypts each
verified secured data segment, and decompresses each
decrypted secure data segment to produce a data segment
152. When the inverse segment security processing module
208 is not enabled, it passes the decoded data segment 152 as
the data segment or is bypassed. The de-segmenting process-
ing module 210 aggregates the data segments 152 into the
data 92 in accordance with control information 190 from the
control module 186.

FIG. 27 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module 22 that includes a plurality of distributed storage and
task (DST) execution units (#1 through #n, where, for
example, n is an integer greater than or equal to three). Each
of the DST execution units includes a DST client module 34,
a controller 86, one or more DT (distributed task) execution
modules 90, and memory 88.

Inthis example, the DSTN module stores, in the memory of
the DST execution units, a plurality of DS (dispersed storage)
encoded data (e.g., 1 through n, where n is an integer greater
than or equal to two) and stores a plurality of DS encoded task
codes (e.g., 1 through k, where k is an integer greater than or
equal to two). The DS encoded data may be encoded in
accordance with one or more examples described with refer-
ence to FIGS. 3-19 (e.g., organized in slice groupings) or
encoded in accordance with one or more examples described
with reference to FIGS. 20-26 (e.g., organized in pillar
groups). The data that is encoded into the DS encoded data
may be of any size and/or of any content. For example, the
data may be one or more digital books, a copy of a company’s
emails, a large-scale Internet search, a video security file, one
or more entertainment video files (e.g., television programs,
movies, etc.), data files, and/or any other large amount of data
(e.g., greater than a few Terra-Bytes).

The tasks that are encoded into the DS encoded task code
may be a simple function (e.g., a mathematical function, a
logic function, an identify function, a find function, a search
engine function, a replace function, etc.), a complex function
(e.g., compression, human and/or computer language trans-
lation, text-to-voice conversion, voice-to-text conversion,
etc.), multiple simple and/or complex functions, one or more
algorithms, one or more applications, etc. The tasks may be
encoded into the DS encoded task code in accordance with
one or more examples described with reference to FIGS. 3-19
(e.g., organized in slice groupings) or encoded in accordance
with one or more examples described with reference to FIGS.
20-26 (e.g., organized in pillar groups).

In an example of operation, a DST client module of a user
device orof'a DST processing unit issues a DST request to the

US 9,154,298 B2

27

DSTN module. The DST request may include a request to
retrieve stored data, or a portion thereof, may include a
request to store data that is included with the DST request,
may include a request to perform one or more tasks on stored
data, may include a request to perform one or more tasks on
data included with the DST request, etc. In the cases where
the DST request includes a request to store data or to retrieve
data, the client module and/or the DSTN module processes
the request as previously discussed with reference to one or
more of FIGS. 3-19 (e.g., slice groupings) and/or 20-26 (e.g.,
pillar groupings). In the case where the DST request includes
a request to perform one or more tasks on data included with
the DST request, the DST client module and/or the DSTN
module process the DST request as previously discussed with
reference to one or more of FIGS. 3-19.

In the case where the DST request includes a request to
perform one or more tasks on stored data, the DST client
module and/or the DSTN module processes the DST request
as will be described with reference to one or more of FIGS.
28-39. In general, the DST client module identifies data and
one or more tasks for the DSTN module to execute upon the
identified data. The DST request may be for a one-time execu-
tion of the task or for an on-going execution of the task. As an
example of the latter, as a company generates daily emails, the
DST request may be to daily search new emails for inappro-
priate content and, if found, record the content, the email
sender(s), the email recipient(s), email routing information,
notify human resources of the identified email, etc.

FIG. 28 is a schematic block diagram of an example of a
distributed computing system performing tasks on stored
data. In this example, two distributed storage and task (DST)
client modules 1-2 are shown: the first may be associated with
a user device and the second may be associated with a DST
processing unit or a high priority user device (e.g., high pri-
ority clearance user, system administrator, etc.). Each DST
client module includes a list of stored data 234 and a list of
tasks codes 236. The list of stored data 234 includes one or
more entries of data identifying information, where each
entry identifies data stored in the DSTN module 22. The data
identifying information (e.g., data ID) includes one or more
of'adatafile name, a data file directory listing, DSTN address-
ing information of the data, a data object identifier, etc. The
list of tasks 236 includes one or more entries of task code
identifying information, when each entry identifies task
codes stored in the DSTN module 22. The task code identi-
fying information (e.g., task ID) includes one or more of a
task file name, a task file directory listing, DSTN addressing
information of the task, another type of identifier to identify
the task, etc.

As shown, the list of data 234 and the list of tasks 236 are
each smaller in number of entries for the first DST client
module than the corresponding lists of the second DST client
module. This may occur because the user device associated
with the first DST client module has fewer privileges in the
distributed computing system than the device associated with
the second DST client module. Alternatively, this may occur
because the user device associated with the first DST client
module serves fewer users than the device associated with the
second DST client module and is restricted by the distributed
computing system accordingly. As yet another alternative,
this may occur through no restraints by the distributed com-
puting system, it just occurred because the operator of the
user device associated with the first DST client module has
selected fewer data and/or fewer tasks than the operator of the
device associated with the second DST client module.

In an example of operation, the first DST client module
selects one or more data entries 238 and one or more tasks 240

10

15

20

25

30

35

40

45

50

55

60

65

28

from its respective lists (e.g., selected data ID and selected
task ID). The first DST client module sends its selections to a
task distribution module 232. The task distribution module
232 may be within a stand-alone device of the distributed
computing system, may be within the user device that con-
tains the first DST client module, or may be within the DSTN
module 22.

Regardless of the task distribution module’s location, it
generates DST allocation information 242 from the selected
task ID 240 and the selected data ID 238. The DST allocation
information 242 includes data partitioning information, task
execution information, and/or intermediate result informa-
tion. The task distribution module 232 sends the DST alloca-
tion information 242 to the DSTN module 22. Note that one
or more examples of the DST allocation information will be
discussed with reference to one or more of FIGS. 29-39.

The DSTN module 22 interprets the DST allocation infor-
mation 242 to identify the stored DS encoded data (e.g., DS
error encoded data 2) and to identify the stored DS error
encoded task code (e.g., DS error encoded task code 1). In
addition, the DSTN module 22 interprets the DST allocation
information 242 to determine how the data is to be partitioned
and how the task is to be partitioned. The DSTN module 22
also determines whether the selected DS error encoded data
238 needs to be converted from pillar grouping to slice group-
ing. If so, the DSTN module 22 converts the selected DS error
encoded data into slice groupings and stores the slice group-
ing DS error encoded data by overwriting the pillar grouping
DS error encoded data or by storing it in a different location in
the memory of the DSTN module 22 (i.e., does not overwrite
the pillar grouping DS encoded data).

The DSTN module 22 partitions the data and the task as
indicated in the DST allocation information 242 and sends the
portions to selected DST execution units of the DSTN module
22. Each of the selected DST execution units performs its
partial task(s) on its slice groupings to produce partial results.
The DSTN module 22 collects the partial results from the
selected DST execution units and provides them, as result
information 244, to the task distribution module 232. The
result information 244 may be the collected partial results,
one or more final results as produced by the DSTN module 22
from processing the partial results in accordance with the
DST allocation information 242, or one or more intermediate
results as produced by the DSTN module 22 from processing
the partial results in accordance with the DST allocation
information 242.

The task distribution module 232 receives the result infor-
mation 244 and provides one or more final results 104 there-
from to the first DST client module. The final result(s) 104
may be result information 244 or a result(s) of the task dis-
tribution module’s processing of the result information 244.

In concurrence with processing the selected task of the first
DST client module, the distributed computing system may
process the selected task(s) of the second DST client module
on the selected data(s) of the second DST client module.
Alternatively, the distributed computing system may process
the second DST client module’s request subsequent to, or
preceding, that of the first DST client module. Regardless of
the ordering and/or parallel processing of the DST client
module requests, the second DST client module provides its
selected data 238 and selected task 240 to a task distribution
module 232. If the task distribution module 232 is a separate
device of the distributed computing system or within the
DSTN module, the task distribution modules 232 coupled to
the first and second DST client modules may be the same
module. The task distribution module 232 processes the

US 9,154,298 B2

29

request of the second DST client module in a similar manner
as it processed the request of the first DST client module.

FIG. 29 is a schematic block diagram of an embodiment of
a task distribution module 232 facilitating the example of
FIG. 28. The task distribution module 232 includes a plurality
oftables it uses to generate distributed storage and task (DST)
allocation information 242 for selected data and selected
tasks received from a DST client module. The tables include
data storage information 248, task storage information 250,
distributed task (DT) execution module information 252, and
task & sub-task mapping information 246.

The data storage information table 248 includes a data
identification (ID) field 260, a data size field 262, an address-
ing information field 264, distributed storage (DS) informa-
tion 266, and may further include other information regarding
the data, how it is stored, and/or how it can be processed. For
example, DS encoded data #1 has a data ID of 1, a data size of
AA (e.g., abyte size of a few terra-bytes or more), addressing
information of Addr_1_AA, and DS parameters of 3/5;
SEG__1; and SLC__1. In this example, the addressing infor-
mation may be a virtual address corresponding to the virtual
address of the first storage word (e.g., one or more bytes) of
the data and information on how to calculate the other
addresses, may be a range of virtual addresses for the storage
words of the data, physical addresses of the first storage word
or the storage words of the data, may be a list of slice names
of'the encoded data slices of the data, etc. The DS parameters
may include identity of an error encoding scheme, decode
threshold/pillar width (e.g., 3/5 for the first data entry), seg-
ment security information (e.g., SEG__1), per slice security
information (e.g., SLC__1), and/or any other information
regarding how the data was encoded into data slices.

The task storage information table 250 includes a task
identification (ID) field 268, a task size field 270, an address-
ing information field 272, distributed storage (DS) informa-
tion 274, and may further include other information regarding
the task, how it is stored, and/or how it can be used to process
data. For example, DS encoded task #2 has a task ID of 2, a
task size of XY, addressing information of Addr_ 2_XY, and
DS parameters of 3/5; SEG _ 2; and SLC_ 2. In this example,
the addressing information may be a virtual address corre-
sponding to the virtual address of the first storage word (e.g.,
one or more bytes) of the task and information on how to
calculate the other addresses, may be a range of virtual
addresses for the storage words ofthe task, physical addresses
of'the first storage word or the storage words of the task, may
be a list of slices names of the encoded slices of the task code,
etc. The DS parameters may include identity of an error
encoding scheme, decode threshold/pillar width (e.g., 3/5 for
the first data entry), segment security information (e.g.,
SEG__2), per slice security information (e.g., SLC__2), and/
or any other information regarding how the task was encoded
into encoded task slices. Note that the segment and/or the
per-slice security information include a type of encryption (if
enabled), a type of compression (if enabled), watermarking
information (if enabled), and/or an integrity check scheme (if
enabled).

The task < sub-task mapping information table 246
includes a task field 256 and a sub-task field 258. The task
field 256 identifies a task stored in the memory of a distributed
storage and task network (DSTN) module and the corre-
sponding sub-task fields 258 indicates whether the task
includes sub-tasks and, if so, how many and if any of the
sub-tasks are ordered. In this example, the task < sub-task
mapping information table 246 includes an entry for each task
stored in memory of the DSTN module (e.g., task 1 through
task k). In particular, this example indicates that task 1

25

35

40

45

50

55

60

65

30

includes 7 sub-tasks; task 2 does not include sub-tasks, and
task k includes r number of sub-tasks (where r is an integer
greater than or equal to two).

The DT execution module table 252 includes a DST execu-
tion unit ID field 276, a DT execution module ID field 278,
and a DT execution module capabilities field 280. The DST
execution unit ID field 276 includes the identity of DST units
in the DSTN module. The DT execution module ID field 278
includes the identity of each DT execution unit in each DST
unit. For example, DST unit 1 includes three DT executions
modules (e.g.,1_1,1_2 and 1_3). The DT execution capa-
bilities field 280 includes identity of the capabilities of the
corresponding DT execution unit. For example, DT execution
module 1 1 includes capabilities X, where X includes one or
more of MIPS capabilities, processing resources (e.g., quan-
tity and capability of microprocessors, CPUs, digital signal
processors, co-processor, microcontrollers, arithmetic logic
circuitry, and/or any other analog and/or digital processing
circuitry), availability of the processing resources, memory
information (e.g., type, size, availability, etc.), and/or any
information germane to executing one or more tasks.

From these tables, the task distribution module 232 gener-
ates the DST allocation information 242 to indicate where the
data is stored, how to partition the data, where the task is
stored, how to partition the task, which DT execution units
should perform which partial task on which data partitions,
where and how intermediate results are to be stored, etc. If
multiple tasks are being performed on the same data or dif-
ferent data, the task distribution module factors such infor-
mation into its generation of the DST allocation information.

FIG. 30 is a diagram of a specific example of a distributed
computing system performing tasks on stored data as a task
flow 318. In this example, selected data 92 is data 2 and
selected tasks are tasks 1, 2, and 3. Task 1 corresponds to
analyzing translation of data from one language to another
(e.g., human language or computer language); task 2 corre-
sponds to finding specific words and/or phrases in the data;
and task 3 corresponds to finding specific translated words
and/or phrases in translated data.

In this example, task 1 includes 7 sub-tasks: task 11—
identify non-words (non-ordered); task 1_2—identify
unique words (non-ordered); task 1 3—translate (non-or-
dered); task 1 4—translate back (ordered after task 1_3);
task 1 5—compare to ID errors (ordered after task 1-4); task
1__6—determine non-word translation errors (ordered after
task 1_Sand1_1); and task 1 7—determine correct trans-
lations (ordered after 1 5 and 1_2). The sub-task further
indicates whether they are an ordered task (i.e., are dependent
on the outcome of another task) or non-order (i.e., are inde-
pendent of the outcome of another task). Task 2 does not
include sub-tasks and task 3 includes two sub-tasks: task 3__1
translate; and task 3_ 2 find specific word or phrase in trans-
lated data.

In general, the three tasks collectively are selected to ana-
lyze data for translation accuracies, translation errors, trans-
lation anomalies, occurrence of specific words or phrases in
the data, and occurrence of specific words or phrases on the
translated data. Graphically, the data 92 is translated 306 into
translated data 282; is analyzed for specific words and/or
phrases 300 to produce a list of specific words and/or phrases
286; is analyzed for non-words 302 (e.g., not in a reference
dictionary) to produce a list of non-words 290; and is ana-
lyzed for unique words 316 included in the data 92 (i.e., how
many different words are included in the data) to produce a
list of unique words 298. Each of these tasks is independent of
each other and can therefore be processed in parallel if
desired.

US 9,154,298 B2

31

The translated data 282 is analyzed (e.g., sub-task 3_ 2) for
specific translated words and/or phrases 304 to produce a list
of specific translated words and/or phrases. The translated
data 282 is translated back 308 (e.g., sub-task 1_4) into the
language of the original data to produce retranslated data 284.
These two tasks are dependent on the translate task (e.g., task
1_3) and thus must be ordered after the translation task,
which may be in a pipelined ordering or a serial ordering. The
retranslated data 284 is then compared 310 with the original
data 92 to find words and/or phrases that did not translate (one
way and/or the other) properly to produce a list of incorrectly
translated words 294. As such, the comparing task (e.g., sub-
task 1_5) 310 is ordered after the translation 306 and re-
translation tasks 308 (e.g., sub-tasks 1 3 and 1_4).

The list of words incorrectly translated 294 is compared
312 to the list of non-words 290 to identify words that were
not properly translated because the words are non-words to
produce a list of errors due to non-words 292. In addition, the
list of words incorrectly translated 294 is compared 314 to the
list of unique words 298 to identify unique words that were
properly translated to produce a list of correctly translated
words 296. The comparison may also identity unique words
that were not properly translated to produce a list of unique
words that were not properly translated. Note that each list of
words (e.g., specific words and/or phrases, non-words,
unique words, translated words and/or phrases, etc.,) may
include the word and/or phrase, how many times it is used,
where in the data it is used, and/or any other information
requested regarding a word and/or phrase.

FIG. 31 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FIG.
30. As shown, DS encoded data 2 is stored as encoded data
slices across the memory (e.g., stored in memories 88) of
DST execution units 1-5; the DS encoded task code 1 (of task
1) and DS encoded task 3 are stored as encoded task slices
across the memory of DST execution units 1-5; and DS
encoded task code 2 (of task 2) is stored as encoded task slices
across the memory of DST execution units 3-7. As indicated
in the data storage information table and the task storage
information table of FIG. 29, the respective data/task has DS
parameters of 3/5 for their decode threshold/pillar width;
hence spanning the memory of five DST execution units.

FIG. 32 is a diagram of an example of distributed storage
and task (DST) allocation information 242 for the example of
FIG. 30. The DST allocation information 242 includes data
partitioning information 320, task execution information 322,
and intermediate result information 324. The data partition-
ing information 320 includes the data identifier (ID), the
number of partitions to split the data into, address information
for each data partition, and whether the DS encoded data has
to be transformed from pillar grouping to slice grouping. The
task execution information 322 includes tabular information
having a task identification field 326, a task ordering field
328, a data partition field ID 330, and a set of DT execution
modules 332 to use for the distributed task processing per data
partition. The intermediate result information 324 includes
tabular information having a name ID field 334, an ID of the
DST execution unit assigned to process the corresponding
intermediate result 336, a scratch pad storage field 338, and an
intermediate result storage field 340.

Continuing with the example of FIG. 30, where tasks 1-3
are to be distributedly performed on data 2, the data partition-
ing information includes the ID of data 2. In addition, the task
distribution module determines whether the DS encoded data
2 is in the proper format for distributed computing (e.g., was
stored as slice groupings). If not, the task distribution module

10

15

20

25

30

35

40

45

50

55

60

65

32

indicates that the DS encoded data 2 format needs to be
changed from the pillar grouping format to the slice grouping
format, which will be done by the DSTN module. In addition,
the task distribution module determines the number of parti-
tions to divide the data into (e.g., 2_ 1 through 2_z) and
addressing information for each partition.

The task distribution module generates an entry in the task
execution information section for each sub-task to be per-
formed. For example, task 1 1 (e.g., identify non-words on
the data) has no task ordering (i.e., is independent of the
results of other sub-tasks), is to be performed on data parti-
tions 21 through 2_z by DT execution modules 1_1,2 1,
3_1,4_1, and 5__1. For instance, DT execution modules
1_1,2_1,3_1,4_1,and5_ 1 search for non-words in data
partitions 2__1 through 2_zto produce task 1__1 intermediate
results (R1-1, which is a list of non-words). Task 12 (e.g.,
identify unique words) has similar task execution information
astask 1_ 1 to produce task 1_ 2 intermediate results (R1-2,
which is the list of unique words).

Task 1_3 (e.g., translate) includes task execution informa-
tion as being non-ordered (i.e., is independent), having DT
executionmodules 1_1,2_1,3_1,4_1, and 5__1 translate
data partitions 21 through 2 4 and having DT execution
modules 1 2,2 2.3 24 2 and 5 2 translate data parti-
tions 25 through 2_z to produce task 1_ 3 intermediate
results (R1-3, which is the translated data). In this example,
the data partitions are grouped, where different sets of DT
execution modules perform a distributed sub-task (or task) on
each data partition group, which allows for further parallel
processing.

Task 1_4 (e.g., translate back) is ordered after task 1_3
and is to be executed on task 1_3’s intermediate result (e.g.,
R1-3_1) (e.g., the translated data). DT execution modules
1_1,2_1,3_1,4_1,and5_ 1 are allocated to translate back
task 1 3 intermediate result partitions R1-3_ 1 through
R1-3_4 and DT execution modules 1_2,2_2,6_1,7_1,
and 7_ 2 are allocated to translate back task 1__3 intermediate
result partitions R1-3__5 through R1-3_z to produce task 1-4
intermediate results (R1-4, which is the translated back data).

Task 1_ 5 (e.g., compare data and translated data to iden-
tify translation errors) is ordered after task 1_ 4 and is to be
executedontask 1 4’s intermediate results (R4-1) and onthe
data. DT executionmodules 1_1,2_1,3_1,4 1,and5_1
are allocated to compare the data partitions (2__1 through
2_z) with partitions of task 1-4 intermediate results partitions
R1-4_1 through R1-4_z to produce task 1_ 5 intermediate
results (R1-5, which is the list words translated incorrectly).

Task 1_ 6 (e.g., determine non-word translation errors) is
ordered after tasks 1 1 and 1 5 and is to be executed on
tasks 1_1’sand 1_ 5’s intermediate results (R1-1 and R1-5).
DT execution modules 1_1,2_1,3_1,4_1,and 5_1 are
allocated to compare the partitions of task 1__1 intermediate
results (R1-1__1 through R1-1_ z) with partitions of task 1-5
intermediate results partitions (R1-5_ 1 through R1-5_z) to
producetask 1_ 6 intermediate results (R1-6, which is the list
translation errors due to non-words).

Task 1_7 (e.g., determine words correctly translated) is
ordered after tasks 1_2 and 1_ 5 and is to be executed on
tasks 1_2’sand 1_ 5’s intermediate results (R1-1 and R1-5).
DT execution modules 1_2,2 2,3 2.4 2 and 5_2 are
allocated to compare the partitions of task 1 2 intermediate
results (R1-2_ 1 through R1-2_z) with partitions of task 1-5
intermediate results partitions (R1-5_ 1 through R1-5_z) to
producetask 1_ 7 intermediate results (R1-7, which is the list
of correctly translated words).

Task 2 (e.g., find specific words and/or phrases) has no task
ordering (i.e., is independent of the results of other sub-tasks),

US 9,154,298 B2

33

is to be performed on data partitions 2__1 through 2_z by DT
execution modules 3_1, 4 1,5 1, 6_1, and 7_1. For
instance, DT execution modules 3_1,4_1,5_1,6_1, and
7__1 search for specific words and/or phrases in data parti-
tions 2__1 through 2_z to produce task 2 intermediate results
(R2, which is a list of specific words and/or phrases).

Task 3_2 (e.g., find specific translated words and/or
phrases) is ordered after task 1_ 3 (e.g., translate) is to be
performed on partitions R1-3 1 through R1-3_z by DT
execution modules 1_2, 22,3 2,4 2 and 5_2. For
instance, DT execution modules 1_2,2 2,3 2,4 2 and
5__2 search for specific translated words and/or phrases in the
partitions of the translated data (R1-3__1 through R1-3_z) to
producetask 3 2 intermediate results (R3-2, which is alist of
specific translated words and/or phrases).

For each task, the intermediate result information indicates
which DST unitis responsible for overseeing execution of the
task and, if needed, processing the partial results generated by
the set of allocated DT execution units. In addition, the inter-
mediate result information indicates a scratch pad memory
for the task and where the corresponding intermediate results
are to be stored. For example, for intermediate result R1-1
(the intermediate result of task 1 1), DST unit 1 is respon-
sible for overseeing execution of the task 1_ 1 and coordi-
nates storage of the intermediate result as encoded interme-
diate result slices stored in memory of DST execution units
1-5. In general, the scratch pad is for storing non-DS encoded
intermediate results and the intermediate result storage is for
storing DS encoded intermediate results.

FIGS. 33-38 are schematic block diagrams of the distrib-
uted storage and task network (DSTN) module performing
the example of FIG. 30. In FIG. 33, the DSTN module
accesses the data 92 and partitions it into a plurality of parti-
tions 1-z in accordance with distributed storage and task
network (DST) allocation information. For each data parti-
tion, the DSTN identifies a set of its DT (distributed task)
execution modules 90 to perform the task (e.g., identify non-
words (i.e., not in a reference dictionary) within the data
partition) in accordance with the DST allocation information.
From data partition to data partition, the set of DT execution
modules 90 may be the same, different, or a combination
thereof (e.g., some data partitions use the same set while other
data partitions use different sets).

For the first data partition, the first set of DT execution
modules (e.g., 11,2 1,3 1,4 1, and 5_ 1 per the DST
allocation information of FIG. 32) executes task 1__1 to pro-
duce a first partial result 102 of non-words found in the first
data partition. The second set of DT execution modules (e.g.,
1 1,2 1,3 1,4 1,and 5 1 perthe DST allocation infor-
mation of FIG. 32) executes task 1_1 to produce a second
partial result 102 of non-words found in the second data
partition. The sets of DT execution modules (as per the DST
allocation information) perform task 1_1 on the data parti-
tions until the “z” set of DT execution modules performs task
1_1 on the “zth” data partition to produce a “zth” partial
result 102 of non-words found in the “zth” data partition.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 1 is assigned to process the first through
“zth” partial results to produce the first intermediate result
(R1-1), which is a list of non-words found in the data. For
instance, each set of DT execution modules 90 stores its
respective partial result in the scratchpad memory of DST
execution unit 1 (which is identified in the DST allocation or
may be determined by DST execution unit 1). A processing
module of DST execution 1 is engaged to aggregate the first
through “zth” partial results to produce the first intermediate
result (e.g., R1_1). The processing module stores the first

10

15

20

25

30

35

40

45

50

55

60

65

34

intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the first intermediate
result (e.g., the list of non-words). To begin the encoding, the
DST client module determines whether the list of non-words
is of a sufficient size to partition (e.g., greater than a Terra-
Byte). If yes, it partitions the first intermediate result (R1-1)
into a plurality of partitions (e.g., R1-1__1 through R1-1_m).
If the first intermediate result is not of sufficient size to par-
tition, it is not partitioned.

For each partition of the first intermediate result, or for the
first intermediate result, the DST client module uses the DS
error encoding parameters of the data (e.g., DS parameters of
data 2, which includes 3/5 decode threshold/pillar width
ratio) to produce slice groupings. The slice groupings are
stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).

In FIG. 34, the DSTN module is performing task 1_ 2 (e.g.,
find unique words) on the data 92. To begin, the DSTN mod-
ule accesses the data 92 and partitions it into a plurality of
partitions 1-z in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. For each data partition, the DSTN
identifies a set of its DT execution modules to perform task
1_2 in accordance with the DST allocation information.
From data partition to data partition, the set of DT execution
modules may be the same, different, or acombination thereof.
For the data partitions, the allocated set of DT execution
modules executes task 1_ 2 to produce a partial results (e.g.,
1% through “zth”) of unique words found in the data parti-
tions.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 1 is assigned to process the first through
“zth” partial results 102 of task 1_ 2 to produce the second
intermediate result (R1-2), which is a list of unique words
found in the data 92. The processing module of DST execu-
tion 1 is engaged to aggregate the first through “zth” partial
results of unique words to produce the second intermediate
result. The processing module stores the second intermediate
result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the second intermediate
result (e.g., the list of non-words). To begin the encoding, the
DST client module determines whether the list of unique
words is of a sufficient size to partition (e.g., greater than a
Terra-Byte). Ifyes, it partitions the second intermediate result
(R1-2) into a plurality of partitions (e.g., R1-2_1 through
R1-2_m). If the second intermediate result is not of sufficient
size to partition, it is not partitioned.

For each partition of the second intermediate result, or for
the second intermediate results, the DST client module uses
the DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).

In FIG. 35, the DSTN module is performing task 1 3 (e.g.,
translate) on the data 92. To begin, the DSTN module
accesses the data 92 and partitions it into a plurality of parti-
tions 1-z in accordance with the DST allocation information
or it may use the data partitions oftask 1__1 if the partitioning
is the same. For each data partition, the DSTN identifies a set
of'its DT execution modules to perform task 1_ 3 in accor-

US 9,154,298 B2

35

dance with the DST allocation information (e.g., DT execu-
tion modules 1_1,2_1,3_1,4_1, and 5_ 1 translate data
partitions 2_ 1 through 2 4 and DT execution modules 1_ 2,
2 2,3 2,4 2 and 5_2 translate data partitions 25
through 2_z7). For the data partitions, the allocated set of DT
execution modules 90 executes task 1_3 to produce partial
results 102 (e.g., 1** through “zth”) of translated data.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 2 is assigned to process the first through
“zth” partial results of task 1_ 3 to produce the third interme-
diate result (R1-3), which is translated data. The processing
module of DST execution 2 is engaged to aggregate the first
through “zth” partial results of translated data to produce the
third intermediate result. The processing module stores the
third intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 2.

DST execution unit 2 engages its DST client module to
slice grouping based DS error encode the third intermediate
result (e.g., translated data). To begin the encoding, the DST
client module partitions the third intermediate result (R1-3)
into a plurality of partitions (e.g., R1-3_ 1 through R1-3_y).
For each partition of the third intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory
(e.g., allocated memory in the memories of DST execution
units 2-6 per the DST allocation information).

As is further shown in FIG. 35, the DSTN module is per-
forming task 1_ 4 (e.g., retranslate) on the translated data of
the third intermediate result. To begin, the DSTN module
accesses the translated data (from the scratchpad memory or
from the intermediate result memory and decodes it) and
partitions it into a plurality of partitions in accordance with
the DST allocation information. For each partition of the third
intermediate result, the DSTN identifies a set ofits DT execu-
tion modules 90 to perform task 1_ 4 in accordance with the
DST allocation information (e.g., DT execution modules
1_1,2_1,3_1,4_1,and5__1 are allocated to translate back
partitions R1-3 1 through R1-3_ 4 and DT execution mod-
ules1_2,2 2,6_1,7_1,and7_ 2 are allocated to translate
back partitions R1-3__5 through R1-3_z). For the partitions,
the allocated set of DT execution modules executes task 1_ 4
to produce partial results 102 (e.g., 1* through “zth”) of
re-translated data.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 3 is assigned to process the first through
“zth” partial results of task 1_ 4 to produce the fourth inter-
mediate result (R1-4), which is retranslated data. The pro-
cessing module of DST execution 3 is engaged to aggregate
the first through “zth” partial results of retranslated data to
produce the fourth intermediate result. The processing mod-
ule stores the fourth intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 3.

DST execution unit 3 engages its DST client module to
slice grouping based DS error encode the fourth intermediate
result (e.g., retranslated data). To begin the encoding, the DST
client module partitions the fourth intermediate result (R1-4)
into a plurality of partitions (e.g., R1-4__1 through R1-4_z).
For each partition of the fourth intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory

30

40

45

55

36

(e.g., allocated memory in the memories of DST execution
units 3-7 per the DST allocation information).

In FIG. 36, a distributed storage and task network (DSTN)
moduleis performing task 15 (e.g., compare) on data 92 and
retranslated data of FIG. 35. To begin, the DSTN module
accesses the data 92 and partitions it into a plurality of parti-
tions in accordance with the DST allocation information or it
may use the data partitions of task 1__1 if the partitioning is
the same. The DSTN module also accesses the retranslated
data from the scratchpad memory, or from the intermediate
result memory and decodes it, and partitions it into a plurality
of partitions in accordance with the DST allocation informa-
tion. The number of partitions of the retranslated data corre-
sponds to the number of partitions of the data.

For each pair of partitions (e.g., data partition 1 and retrans-
lated data partition 1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1_5 in accordance
with the DST allocation information (e.g., DT execution
modules 1_1,2 1,3 1,4 1, and 5_1). For each pair of
partitions, the allocated set of DT execution modules executes
task 1__5 to produce partial results 102 (e.g., 1°* through
“zth”) of a list of incorrectly translated words and/or phrases.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 1 is assigned to process the first through
“zth” partial results of task 1__5 to produce the fifth interme-
diate result (R1-5), which is the list of incorrectly translated
words and/or phrases. In particular, the processing module of
DST execution 1 is engaged to aggregate the first through
“zth” partial results of the list of incorrectly translated words
and/or phrases to produce the fifth intermediate result. The
processing module stores the fifth intermediate result as non-
DS error encoded data in the scratchpad memory or in another
section of memory of DST execution unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the fifth intermediate
result. To begin the encoding, the DST client module parti-
tions the fifth intermediate result (R1-5) into a plurality of
partitions (e.g., R1-5_1 through R1-5_z). For each partition
of'the fifth intermediate result, the DST client module uses the
DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5 per the
DST allocation information).

As is further shown in FIG. 36, the DSTN module is per-
forming task 1 _ 6 (e.g., translation errors due to non-words)
on the list of incorrectly translated words and/or phrases (e.g.,
the fifth intermediate result R1-5) and the list of non-words
(e.g., the first intermediate result R1-1). To begin, the DSTN
module accesses the lists and partitions them into a corre-
sponding number of partitions.

For each pair of partitions (e.g., partition R1-1_1 and
partition R1-5_ 1), the DSTN identifies a set of its DT execu-
tion modules 90 to perform task 1_ 6 in accordance with the
DST allocation information (e.g., DT execution modules
11,2 1,3_1,4_1,and 5_1). For each pair of partitions,
the allocated set of DT execution modules executes task 1_ 6
to produce partial results 102 (e.g., 15 through “zth™) of a list
of incorrectly translated words and/or phrases due to non-
words.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 2 is assigned to process the first through
“zth” partial results of task 1__6 to produce the sixth interme-
diate result (R1-6), which is the list of incorrectly translated
words and/or phrases due to non-words. In particular, the
processing module of DST execution 2 is engaged to aggre-

US 9,154,298 B2

37

gate the first through “zth” partial results of the list of incor-
rectly translated words and/or phrases due to non-words to
produce the sixth intermediate result. The processing module
stores the sixth intermediate result as non-DS error encoded
data in the scratchpad memory or in another section of
memory of DST execution unit 2.

DST execution unit 2 engages its DST client module to
slice grouping based DS error encode the sixth intermediate
result. To begin the encoding, the DST client module parti-
tions the sixth intermediate result (R1-6) into a plurality of
partitions (e.g., R1-6__1 through R1-6_z). For each partition
of the sixth intermediate result, the DST client module uses
the DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 2-6 per the
DST allocation information).

As is still further shown in FIG. 36, the DSTN module is
performing task 1_ 7 (e.g., correctly translated words and/or
phrases) on the list of incorrectly translated words and/or
phrases (e.g., the fifth intermediate result R1-5) and the list of
unique words (e.g., the second intermediate result R1-2). To
begin, the DSTN module accesses the lists and partitions
them into a corresponding number of partitions.

For each pair of partitions (e.g., partition R1-2_1 and
partition R1-5_ 1), the DSTN identifies a set of its DT execu-
tion modules 90 to perform task 1 7 in accordance with the
DST allocation information (e.g., DT execution modules
12,2 2,3 2,4 2 and 5 2).For each pair of partitions,
the allocated set of DT execution modules executes task 1_ 7
to produce partial results 102 (e.g., 1°* through “zth”) of a list
of correctly translated words and/or phrases.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 3 is assigned to process the first through
“zth” partial results of task 1_ 7 to produce the seventh inter-
mediate result (R1-7), which is the list of correctly translated
words and/or phrases. In particular, the processing module of
DST execution 3 is engaged to aggregate the first through
“zth” partial results of the list of correctly translated words
and/or phrases to produce the seventh intermediate result. The
processing module stores the seventh intermediate result as
non-DS error encoded data in the scratchpad memory or in
another section of memory of DST execution unit 3.

DST execution unit 3 engages its DST client module to
slice grouping based DS error encode the seventh intermedi-
ate result. To begin the encoding, the DST client module
partitions the seventh intermediate result (R1-7) into a plu-
rality of partitions (e.g., R1-7_1 through R1-7_z). For each
partition of the seventh intermediate result, the DST client
module uses the DS error encoding parameters of the data
(e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory
(e.g., allocated memory in the memories of DST execution
units 3-7 per the DST allocation information).

In FIG. 37, the distributed storage and task network
(DSTN) module is performing task 2 (e.g., find specific words
and/or phrases) on the data 92. To begin, the DSTN module
accesses the data and partitions it into a plurality of partitions
1-z in accordance with the DST allocation information or it
may use the data partitions of task 1__1 if the partitioning is
the same. For each data partition, the DSTN identifies a set of
its DT execution modules 90 to perform task 2 in accordance
with the DST allocation information. From data partition to
data partition, the set of DT execution modules may be the
same, different, or a combination thereof. For the data parti-

5

10

15

20

25

30

35

40

45

50

55

60

65

38

tions, the allocated set of DT execution modules executes task
2 to produce partial results 102 (e.g., 1°* through “zth™) of
specific words and/or phrases found in the data partitions.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 7 is assigned to process the first through
“zth” partial results of task 2 to produce task 2 intermediate
result (R2), which is a list of specific words and/or phrases
found in the data. The processing module of DST execution 7
is engaged to aggregate the first through “zth” partial results
of specific words and/or phrases to produce the task 2 inter-
mediate result. The processing module stores the task 2 inter-
mediate result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 7.

DST execution unit 7 engages its DST client module to
slice grouping based DS error encode the task 2 intermediate
result. To begin the encoding, the DST client module deter-
mines whether the list of specific words and/or phrases is of a
sufficient size to partition (e.g., greater than a Terra-Byte). If
yes, it partitions the task 2 intermediate result (R2) into a
plurality of partitions (e.g., R2 1 through R2_m). If the task
2 intermediate result is not of sufficient size to partition, it is
not partitioned.

For each partition of the task 2 intermediate result, or for
the task 2 intermediate results, the DST client module uses the
DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-4, and 7).

In FIG. 38, the distributed storage and task network
(DSTN) module is performing task 3 (e.g., find specific trans-
lated words and/or phrases) on the translated data (R1-3). To
begin, the DSTN module accesses the translated data (from
the scratchpad memory or from the intermediate result
memory and decodes it) and partitions it into a plurality of
partitions in accordance with the DST allocation information.
For each partition, the DSTN identifies a set of its DT execu-
tion modules to perform task 3 in accordance with the DST
allocation information. From partition to partition, the set of
DT execution modules may be the same, different, or a com-
bination thereof. For the partitions, the allocated set of DT
execution modules 90 executes task 3 to produce partial
results 102 (e.g., 1% through “zth”) of specific translated
words and/or phrases found in the data partitions.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 5 is assigned to process the first through
“zth” partial results of task 3 to produce task 3 intermediate
result (R3), which is a list of specific translated words and/or
phrases found in the translated data. In particular, the process-
ing module of DST execution 5 is engaged to aggregate the
first through “zth” partial results of specific translated words
and/or phrases to produce the task 3 intermediate result. The
processing module stores the task 3 intermediate result as
non-DS error encoded data in the scratchpad memory or in
another section of memory of DST execution unit 7.

DST execution unit 5 engages its DST client module to
slice grouping based DS error encode the task 3 intermediate
result. To begin the encoding, the DST client module deter-
mines whether the list of specific translated words and/or
phrases is of a sufficient size to partition (e.g., greater than a
Terra-Byte). If yes, it partitions the task 3 intermediate result
(R3) into a plurality of partitions (e.g., R3_ 1 through R3_m).
If the task 3 intermediate result is not of sufficient size to
partition, it is not partitioned.

For each partition of the task 3 intermediate result, or for
the task 3 intermediate results, the DST client module uses the

US 9,154,298 B2

39

DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-4, 5, and
D.
FIG. 39 is a diagram of an example of combining result
information 244 into final results 104 for the example of FIG.
30. In this example, the result information 244 includes the
list of specific words and/or phrases found in the data (task 2
intermediate result), the list of specific translated words and/
or phrases found in the data (task 3 intermediate result), the
list of non-words found in the data (task 1 first intermediate
result R1-1), the list of unique words found in the data (task 1
second intermediate result R1-2), the list of translation errors
due to non-words (task 1 sixth intermediate result R1-6), and
the list of correctly translated words and/or phrases (task 1
seventh intermediate result R1-7). The task distribution mod-
ule provides the result information to the requesting DST
client module as the results 104.

FIG. 40A is a schematic block diagram of another embodi-
ment of a distributed computing system that includes a plu-
rality of user devices 12, a distributed storage and task (DST)
processing unit 16, and a DST execution unit 36. The DST
processing unit 16 is operably coupled to the DST execution
unit 36 utilizing a plurality of connections 1-N. A connection
of the plurality of connections 1-N may be implemented
realizing one or more networks. Each network of the one or
more networks includes at least one of a wireless network, a
wireline network, an internet connection, and a private con-
nection. Each connection of the plurality of connections 1-N
may be utilized to communicate requests and responses asso-
ciated with accessing the DST execution unit 36.

The system functions to authenticate each user device 12 of
the plurality of user devices 12 with the DST execution unit
36 enabling each user device 12 to access the DST execution
unit 36. The DST processing unit 16 receives username/
passwords 350 from each user device 12. Alternatively, the
DST processing unit 16 receives public-key infrastructure
(PKI) credentials from one or more user devices 12. The DST
processing unit 16 establishes a secure channel over a first
connection of the plurality of connections 1-N with the DST
execution unit 36. Establishing the secure channel includes
utilizing at least one of a variety of industry standards includ-
ing transport layer security (TLS), secure sockets layer
(SSL), and secure shell protocol (SSH). When the secure
channel is established over the first connection, the DST
processing unit 16 generates and sends an initial authentica-
tion request 352 to the DST execution unit 36. The generating
includes generating the request to include one or more of the
username/passwords 350 and/or PKI credentials. The DST
execution unit 36 verifies that each of the user devices 12
included in the initial authentication request 352 is authenti-
cated. The DST execution unit 36 generates an authentication
response 358 to include an indication with regards to authen-
tication of each of one or more user devices 12. For example,
the indication indicates an authenticated status when the DST
execution unit 36 determines that a username/password 350
of the initial authentication request 352 is valid.

The DST processing unit 16 receives the authentication
response 358 and may forward a portion of the authentication
response 358 to each user device 12 of the plurality of user
devices 12. When it is desired to utilize more than the first
connection, the DST processing unit 16 establishes an addi-
tional secure channel over each of the desired additional
connections. Next, the DST processing unit 16 generates and
sends a secret request 354 to the DST execution 36. The secret

10

15

20

25

30

35

40

45

50

55

60

65

40

request 354 is utilized to establish a shared secret between the
DST processing unit 16 and the DST execution unit 36. The
establishing the shared secret includes at least one of the DST
processing unit 16 providing the shared secret, the DST
execution unit 36 providing the shared secret, and the DST
processing unit 16 and the DST execution unit 36 cooperating
to generate the shared secret (e.g., utilizing a Diffie Hellman
approach). The DST execution unit 36 generates a secret
response 356 (e.g., including the shared secret, secret infor-
mation to establish the shared secret) and outputs the secret
response 356 to the DST processing unit 16 to facilitate
completion of establishment of the shared secret. A method to
establish the shared secret is discussed in greater detail with
reference to FIG. 40B.

When the shared secret is established, for each other con-
nection of the desired additional connections, the DST pro-
cessing unit 16 generates a clone authentication request 360
based on the shared secret. The clone authentication request
360 includes a portion of the secret response 356 (e.g., includ-
ing one or more of a shared secret acknowledgment, the
shared secret, a portion of secret information). For each addi-
tional secure channel, the DST processing unit 16 outputs the
clone authentication request 360 over a corresponding con-
nection to the DST execution unit 36. The DST execution unit
36 affiliates (e.g., authenticates) the one or more user devices
12 of the initial authentication request 352 with each connec-
tion of the one or more additional connections. The DST
execution unit 36 generates a clone authentication response
362 including an acknowledgment that the one or more user
devices 12 of the initial authentication request 352 are now
authorized to access the DST execution unit 36 via the one or
more other connections. For each other connection of the one
or more other connections, the DST execution unit 36 outputs
the clone authentication response 362 over the other connec-
tion. Subsequent to receiving a clone authentication response
362, the DST processing unit 16 may utilize a corresponding
other connection to provide access by one or more of the user
devices 12 to the DST execution unit 36.

FIG. 40B is a flowchart illustrating an example of estab-
lishing a secure connection. The method begins at step 370
where a processing module (e.g., of a distributed storage and
task (DST) client module) establishes a first connection to a
common entity (e.g., a DST execution unit). The establishing
includes at least one of initializing, identifying, a query,
lookup, a connectivity test, and selecting. For example, the
processing module identifies the first connection utilizing an
initializing connectivity test based on an internet protocol
address of the common entity. The method continues at step
372 where the processing module establishes a first secure
channel over the first connection (e.g., utilizing one of a
variety of industry standards including transport layer secu-
rity (TLS), secure sockets layer (SSL), and secure shell pro-
tocol (SSH)). The secure channel provides confidential com-
munication between the processing module and the common
entity.

The method continues at step 374 where the processing
module authenticates a plurality of dispersed storage and task
network (DSTN) entities (e.g., user devices) with the com-
mon entity utilizing the first secure channel. For example, a
processing module generates an initial authentication request
that includes username/password information for each DSTN
entity of the plurality of DSTN entities. Next, the processing
module outputs the initial authentication request to the com-
mon entity via the first secure channel. The processing mod-
ule receives an authentication response indicating an authen-
tication status (e.g., authenticated, not authenticated) for each
DSTN entity of the plurality of DSTN entities.

US 9,154,298 B2

41

The method continues at step 376 where the processing
module generates a secret request for the common entity,
where the secret request invokes a procedure to produce a
shared secret between the processing module and the com-
mon entity. A variety of procedures may be utilized including
at least one of a Diffie-Hellman approach, a random secret
generation approach, a lookup approach, and a one-sided
approach, wherein the one-sided approach includes at least
one of the processing module and the common entity select-
ing the shared secret. As an example of generating the secret
request when the Diffie-Hellman approach is utilized, pro-
cessing module generates public values p and g, generates a
value A based on public values p and g, and generates the
secure request to include public values p and g, and A. The
public value g is a primitive root for public value p such that
every number a between 1 and (p-1), there is some integer
exponent (e) such that g"e mod p=a. The processing module
generates value A based on an expression of: A=g” mod p,
wherein value a is a private value associated with the process-
ing module (e.g., retrieved from memory, generating a ran-
dom number, lookup).

The method continues at step 378 where the processing
module outputs the secret request to the common entity uti-
lizing the first secure channel. The common entity receives
the secret request and processes the secret request to produce
a secret response. The processing includes generating the
secret response based on the secret request. For example, the
common entity extracts public values p and g, and A from the
secret request when the Diffie Hellman approach is utilized.
Next, the common entity generates a private value b (e.g.,
retrieved from memory, generating a random number,
lookup). The common entity generates a value B in accor-
dance with an expression of B=g? mod p. The common entity
generates the secret response to include the value B and
outputs the secret response to the processing module. The
common entity computes the shared secret in accordance
with an expression of: shared secret=A” mod p.

The method continues at step 380 where the processing
module receives the secret response from the common entity
that includes secret information (e.g., the value B). The
receiving includes generating the shared secret from the
secret information. The generating includes at least one of
extracting shared secret from the secret information and gen-
erating the shared secret based on the secret information. For
example, when utilizing the Diffie-Hellman approach, the
processing module generates the shared secret in accordance
with an expression of: shared secret=B“ mod p.

The method continues at step 382 where the processing
module establishes at least one other connection to the com-
mon entity. The establishing may include determining a num-
ber of other connections to be established based on one or
more of a network loading level, an estimated loading
requirement level, a historical performance indicator, an error
message, a predetermination, and they request. For each other
connection, the method continues at step 384 where the pro-
cessing module establishes a corresponding secure channel
over the other connection.

For each other secure channel, the method continues at step
386 where the processing module generates a clone authen-
tication request with the common entity based on the secret
information. The generating includes generating the request
to include one or more of a clone authentication request
opcode, a requesting entity identifier, a first secure channel
identifier, the present secure channel identifier, the shared
secret, a list of the plurality of DSTN entities, and a portion of
the secret information. For each other secure channel, the
method continues at step 388 where the processing module

10

15

20

25

30

35

40

45

50

55

60

65

42

outputs a corresponding clone authentication request to the
common entity utilizing the other secure channel. The com-
mon entity authenticates the clone authentication request.
The authentication includes verifying that the clone authen-
tication request includes at least a favorable portion of the
secret information (e.g., the shared secret from the processing
module substantially matches a stored shared secret proofs
are calculated by the common entity). The common entity
affiliates the plurality of DSTN entities with the other secure
channel when the authentication is favorable. For each other
secure channel, the method continues at step 390 where the
processing module receives a clone authentication response.
The clone authentication response includes an authentication
status associated with the other secure channel.

FIG. 41A is a schematic block diagram of another embodi-
ment of a distributed computing system that includes the
DSTN managing unit 18, the network 24, and the DSTN
module 22 of FIG. 1. The DSTN module 22 includes a plu-
rality of DST execution unit sets 398, where each set includes
a set of DST execution units 36. Each DST execution unit 36
includes one or more memories 88. In an example of storing
aplurality of base keys in the DSTN module 22, for each base
key the DSTN managing unit 18 identifies a domain of a
plurality of domains of memory based on one or more of a
base key affiliation indicator and a domain active indicator to
produce a memory domain identifier (ID) 394.

Each domain of memory is based on at least one of address-
ing information and requesting entity information. The
addressing information includes at least one of a vault iden-
tifier, a pillar identifier, a source name, a source name range,
avault source name identifier, a vault source name range, and
a slice name range. The requesting entity information
includes one or more of a user device identifier, a group of
user device identifiers, a user identifier, a user group identi-
fier, a universally unique identifier, and an Internet protocol
address. For example, a first domain is associated with a first
vault for all users, a second domain is associated with a
second vault for all users, etc. As another example, the first
domain is associated with the first vault for a first group of
users, the second domain is associated with the first vault for
a second group of users etc.

The base key affiliation indicator indicates whether the
domain is associated with a base key. For example, the base
key affiliation indicator indicates that the first domain is asso-
ciated with a first base key when the first base key has been
generated for the first domain. As another example, the base
key affiliation indicator indicates that the second domain is
associated with any base key when no base key has been
generated for the second domain. The domain active indicator
indicates whether the domain has been assigned for usage
within the system. For example, the domain active indicator
indicates that a third domain is inactive when the third domain
has not yet been assigned. As another example, the domain
active indicator indicates that the third domain is active when
the third domain has been assigned.

As a specific example of identifying the domain based on
one or more of the base key affiliation indicator and the
domain active indicator, the DSTN managing unit 18 identi-
fies the fourth domain when a base key affiliation indicator
associated with the fourth domain indicates that the fourth
domain is not associated with a corresponding base key and
the domain active indicator indicates that the fourth domain is
assigned. Having identified the domain, the DSTN managing
unit 18 obtains the base key (e.g., a new base key) for the
domain. The obtaining includes at least one of retrieving the
base key from a base key table based on the memory domain
1D 394, receiving the base key (e.g., from a key management

US 9,154,298 B2

43

system, from a system administrator, from a user device), and
generating the base key. As a specific example of generating
the base key, the DSTN managing unit 18 generates a random
number and applies a deterministic function to the random
number to produce the base key. The deterministic function
includes at least one of a hashing function, a hash-based
message authentication code function, a sponge function, a
cyclic redundancy check function, and a mask generating
function. For instance, the DSTN managing unit applies the
mask generating function to the random number to produce
the base key that includes a desired number of bits to substan-
tially match a number of bits used by encryption functions of
the system. As another specific example of generating the
base key, the DSTN managing unit 18 applies the determin-
istic function to the memory domain ID 394 to produce the
base key.

Having produced the base key for the domain, the DSTN
managing unit 18 encodes the base key using a dispersed
storage error coding function in accordance with dispersal
parameters to produce a set of base key slices 1-n. The dis-
persal parameters include a pillar width number n. The DSTN
managing unit 18 may select the pillar width number n based
on a number of storage locations (e.g., based on one or more
of a query, a lookup, a predetermination) to be utilized for
storage of the set of base key slices 1-n. Having produced the
set of base key slices 1-n, the DSTN managing unit 18 iden-
tifies a set of storage locations for storage of the set of base
key slices 1-n. The storage locations include at least one of
one or more physical storage locations and one or more vir-
tual storage locations. A virtual storage location includes a
DSTN address (e.g., a logical address of the system which
may also be referred to as a dispersed storage network (DSN)
address). A physical storage location includes a memory
device ID and a memory address.

As a specific example of selecting the set of storage loca-
tions, the DSTN managing unit 18 selects each DST execu-
tion units 36 of a first DST execution unit set 398 when
exclusively selecting logical storage locations. As another
specific example, the DSTN managing unit 18 selects a set of
memory devices 88 of each DST execution unit 36 of another
DST execution unit set 398 when exclusively selecting physi-
cal storage locations. As yet another specific example, the
DST managing unit 18 selects at least some DST execution
units 36 of the first DST execution unit set 398 and at least
some memories 88 of at least some DST execution units 36 of
the other DST execution unit set 398 when selecting a com-
bination of physical and logical storage locations.

Having identified the set of storage locations, the DSTN
managing unit 18 stores the set of base keys at the set of
storage locations. For example, the DSTN managing unit 18
sends: a first base key slice to a first DST execution unit 36 of
the first DST execution unit set 398, a second base key slice to
a second DST execution unit 36 of the first DST execution
unit set 398, etc. As another example, the DSTN managing
unit 18 sends: the first base slice key to a first memory 88 of
the first DST execution unit 36 of the other DST execution
unit set 398, the second base slice key to a second memory 88
of'the first DST execution unit 36 of the other DST execution
unit set 398, etc.

Having stored the set of base key slices, the DSTN man-
aging unit 18 facilitates sending identity information 392 to
DSTN entities associated with the domain, where the identity
information 392 includes the memory domain ID 394 and
base key storage location 396 (e.g., the set of storage loca-
tions). The DSTN entities associated with the domain include
DST execution units 36 associated with assignment of the
domain (e.g., DST execution units 36 that store data associ-

10

15

20

25

30

35

40

45

50

55

60

65

44

ated with the domain). For example, the DSTN managing unit
18 identifies the DSTN entities associated with the domain to
include a DST execution unit set 398 assigned to the first vault
when the domain is associated with the first vault. As a spe-
cific example, the DSTN managing unit 18 sends the identity
information 392 to DST execution units 36 associated with
the set of storage locations.

FIG. 41B is schematic block diagram of another embodi-
ment of the distributed storage and task execution unit 36 of a
set of DST execution units 36, where each DST execution unit
36 includes a key provision module 400, a key generator
module 402, and the processing module 84, the memory 88,
and the DST client module 34 of FIG. 3. The DST client
module 34 includes the inbound DST processing 82 and the
outbound DST processing 80 of FIG. 3. The inbound DST
processing 82 includes an encryptor 404 and the outbound
DST processing 80 includes a decryptor 406.

In an example of receiving an access request regarding a
data object 428, the processing module 84 receives a dis-
persed storage network (DSN) write request 410. The access
request includes a data object identifier for the data object
428, requester information, and addressing information. In an
example of determining a base key identifier (ID) 412 based
on the access request, the processing module 84 determines a
domain based on at least one of the addressing information
and the requestor information. The domain is one of a plural-
ity of domains of memory of a DSN (e.g., or of a distributed
storage and task network DSTN). A plurality of base keys are
assigned to the plurality of domains. A plurality of base key
identifiers are associated with the plurality of base keys. For
example, the processing module 84 identifies a third domain
when the requester information of the request includes a user
device ID associated with the third domain and the addressing
information includes a vault ID associated with the third
domain. As a specific example of determining the base key ID
412, the processing module 84 determines the base key ID
412 from the plurality of base key identifiers based on the
domain. For instance, the processing module 84 receives
registry information from a managing unit that includes an
indication of an association of the third domain with the base
key 1D 412. Alternatively, the processing module 84 deter-
mines the base key 1D 412 by sending a domain request to the
managing unit, where the domain request includes at least a
portion of the access request and receiving the base key ID.

In an example of determining content specific information
414 based on the access request, the processing module 84
utilizes the data object identifier (e.g., slice name, file name,
object name, etc.) as at least part of the content specific
information 414. As another example, the processing module
84 determines the at least part of the content specific infor-
mation 414 by determining one or more of physical addresses
of memory of the DST execution unit 36 (e.g., also referred to
as a storage device) from the addressing information, logical
addresses regarding the data object from the addressing infor-
mation (e.g., DSN address, vault ID, etc.), data type of the
data object, a timestamp of the access request, and identity of
a requesting device based on the requestor information. For
example, the processing module 84 determines the content
specific information 414 as slice name 14F3 AB from the data
object identifier. As another example, the processing module
determines the content specific information 414 as a pillar ID
of’3 when the addressing information indicates that the access
request is associated with a pillar 3.

In an example of recovering a base key 424, the key pro-
vision module 400 retrieves a set of base key slices utilizing
the base key ID 412. As a specific example, the key provision
module 400 determines identity of a set of other DST execu-

US 9,154,298 B2

45

tion units 36 (e.g., also referred to as other storage devices)
based on the base key ID 412, sends a set of key slice retrieval
requests 416 to the set of other DST execution units 36, and
receives base key slice read responses 420 that includes at
least a decode threshold number of base key slices to recover
the base key. Alternatively, or in addition to, the key provision
module 400 issues a base key read slice instruction 418 to
memory 88 to retrieve a base key slice 422 of the set of base
key slices. For example, the key provision module 400 deter-
mines the identity of the set of other DST execution units 36
by extracting base key storage location from identity infor-
mation received from the managing unit.

Having retrieved the set of base key slices, the key provi-
sion module 400 decodes the set of base key slices in accor-
dance with an error encoding function to recover the base key
424. The error encoding function includes one or more of a
dispersed storage error encoding function, a Shamir shared
secret encoding function, and an encryption function using a
public key of public/private key pair of the DST execution
unit 36 to produce an encrypted base key and dividing the
encrypted based key into encrypted base key portions to pro-
duce the set of base key slices.

In an example of generating an access specific key 426
based on the recovered base key 424 and the content specific
information 414, the key generator module 402 performs a
function on the recovered base key 424 and the content spe-
cific information 414 to produce the access specific key 426.
The function includes one or more of a deterministic function
(e.g., hashing function, a mask generating function, sponge
function, hash-based message authentication code function),
a logical function (e.g., AND, OR, XOR, NOR, etc.), and a
mathematical function (e.g., add, subtract, divide, multiply,
etc.). As another example of generating the access specific
key 426 based on the recovered base key 424 and the content
specific information 414, the key generator module 402
encrypts the recovered base 424 key utilizing the content
specific information 414 to produce the access specific key
426. As yet another example, the key generator module 402
encrypts the content specific information 414 utilizing the
recovered base key 424 to produce the access specific key
426.

In an example of executing the access request regarding the
data object 428 utilizing the access specific key 426 when the
access request includes the DSN write request 410, the pro-
cessing module 84 facilitates encrypting the data object 428
using the access specific key 426 to produce an encrypted data
object 430. As a specific example, the processing module 84
instructs the encryptor 404 to encrypt the data object 428 to
produce the encrypted data object 430. Having facilitated
encrypting of the data object 428, the processing module 84
sends a write instruction 432 to the memory 88. The process-
ing module 84 facilitates storing the encrypted data object
430 in the memory 88 in accordance with the write instruction
432. As a specific example, the processing module 84
instructs the inbound DST processing 82 to send the
encrypted data object 430 to the memory 88.

Alternatively, or in addition to, the system may process a
plurality of access requests, where the plurality of access
request includes a plurality of DSN write requests. In an
example of processing the plurality of access requests, the
processing module 84 receives the plurality of access
requests, where the plurality of access requests include the
access request. The processing module 84 determines the
base key ID 412 for the plurality of access requests. For
instance, the base key ID 412 is associated with a common
vault of the plurality of access requests. The processing mod-
ule 84 determines a plurality of content specific information

10

15

20

25

30

35

40

45

50

55

60

65

46

based on the plurality of access requests. For instance, a slice
name associated with each of the plurality of access request is
utilized to produce a corresponding content specific informa-
tion of the plurality of content specific information.

With the plurality of content specific information pro-
duced, the key provision module 400 retrieves the set of base
key slices utilizing the base key ID 412 and decodes the set of
base key slices in accordance with the error encoding function
to recover the base key 424. For each of the plurality of access
requests, the key generator module 402 generates another
unique access specific key based on the recovered base key
424 and a corresponding one of the plurality of content spe-
cific information 414. With another unique access specific
key produced for each of the plurality of access requests, the
processing module 84 executes the plurality of access
requests utilizing each of the other unique access specific
keys. For example, the processing module facilitates encryp-
tion of ten data objects to produce ten encrypted data objects
for storage in the memory 88 when the plurality of access
request includes the plurality of DSN write requests.

FIG. 41C is a schematic block diagram of another embodi-
ment of the distributed storage and task execution unit 36 of
the set of DST execution units 36 of FIG. 41B, where each
DST execution unit 36 includes the key provision module
400, the key generator module 402, the processing module
84, the memory 88, and the DST client module 34 of FIG.
41B. The DST client module 34 includes the inbound DST
processing 82 and the outbound DST processing 80 of FIG.
41B. The inbound DST processing 82 includes the encryptor
404 of FIG. 41B and the outbound DST processing 80
includes the decryptor 406 of FIG. 41B.

In an example of receiving an access request regarding a
data object 428, the processing module 84 receives a dis-
persed storage network (DSN) read request 434. The process-
ing module 84 determines the base key identifier (ID) 412
based on the access request. The processing module 84 deter-
mines the content specific information 414 based on the
access request. The processing module 84 recovers the base
key 424 utilizing the base key ID 412 by sending the set ofkey
slice retrieval requests 416 to other DST execution units 36,
receiving base key slice read responses 420 that includes at
least a decode threshold number of base key slices to recover
the base key 424. Alternatively, or in addition to, the key
provision module 400 issues the base key read slice instruc-
tion 418 to memory 88 to retrieve the base key slice 422 of the
set of base key slices. Having retrieved the set of base key
slices, the key provision module 400 decodes the set of base
key slices in accordance with the error encoding function to
recover the base key 424. The key generator module 402
generates the access specific key 426 based on the recovered
base key 424 and the content specific information 414.

In an example of executing the access request regarding the
data object 428 utilizing the access specific key 426 when the
access request includes the DSN read request 434, the pro-
cessing module 84 sends a read instruction 436 to the memory
88 and facilitates retrieving the encrypted data object 430
from the memory 88 in accordance with the read instruction
436. As a specific example, the processing module 84
instructs the outbound DST processing 82 receives the
encrypted data object 430. The processing module 84 facili-
tates decrypting the encrypted data object 430 using the
access specific key 426 to recover the data object 428. As a
specific example, the processing module instructs the decryp-
tor 406 to decrypt the encrypted data object 430 using the
access specific key 426 to produce the recovered data object
428. Having recovered the data object 428, the processing

US 9,154,298 B2

47

module 84 outputs a DSN read response 438 to a requesting
entity, where the DSN read response 438 includes the recov-
ered data object 428.

Alternatively, or in addition to, the system may process a
plurality of access requests that includes a plurality of DSN
read request 434. In an example of processing the plurality of
access requests, the processing module 84 receives the plu-
rality of access requests, where the plurality of access
requests includes the access request. The processing module
84 determines the base key 1D 412 for the plurality of access
requests. The processing module 84 determines a plurality of
content specific information 414 based on the plurality of
access requests.

With the plurality of content specific information 414 pro-
duced, the key provision module 400 retrieves the set of base
key slices utilizing the base key 1D 412 and decodes the set of
basekey slices in accordance with the error encoding function
to recover the base key 424. For each of the plurality of access
requests, the key generator module 402 generates another
unique access specific key based on the recovered base key
424 and a corresponding one of the plurality of content spe-
cific information. With another unique access specific key
produced for each of the plurality of access requests, the
processing module 84 executes the plurality of access
requests utilizing each of the other unique access specific
keys. For example, the processing module facilitates recovery
of'ten encrypted data objects from the memory 88 and decryp-
tion of the ten encrypted data objects to reproduce ten data
objects when the plurality of access request includes the
plurality of DSN read requests.

FIG. 41D is a flowchart illustrating an example of access-
ing secure data. The method begins at step 440 where a
processing module (e.g., of a storage unit) receives an access
request regarding a data object, where the access request
includes a data object identifier, requestor information, and
addressing information. Alternatively, the processing module
may receive a plurality of access requests, where the plurality
of access requests includes the access request. Each access
request may further include one of a write request and a read
request.

The method continues at step 442 where the processing
module determines a base key identifier based on the access
request. When receiving the plurality of access requests, the
processing module determines the base key identifier for the
plurality of access requests (e.g., for a common vault). As an
example of determining the base key identifier, the processing
module determines a domain based on at least one of the
addressing information and the requestor information, where
the domain is one of a plurality of domains of memory of a
dispersed storage network (DSN). A plurality of base keys is
assigned to the plurality of domains. A plurality of base key
identifiers are associated with the plurality of base keys. The
processing module determines the base key identifier from
the plurality of base key identifiers based on the domain. As
another example of determining the base key identifier, the
processing module sends a domain request to a managing
unit, where the domain request includes at least a portion of
the access request. The processing module receives the base
key identifier from the managing unit.

The method continues at step 444 where the processing
module determines content specific information based on the
access request. When receiving the plurality of access
requests, the processing module determines a plurality of
content specific information based on the plurality of access
requests (e.g., by each slice name). Examples of the process-
ing module determining the content specific information
includes one or more of utilizing the data object identifier as

25

30

35

40

45

50

55

60

65

48

at least part of the content specific information (e.g., slice
name, file name, object name, etc.) and determining the at
least part of the content specific information one or more of
physical addresses of memory of the storage device from the
addressing information, logical addresses regarding the data
object from the addressing information (e.g., DSN address,
vault, etc.), data type of the data object, a timestamp of the
access request, and identity of a requesting device based on
the requestor information.

The method continues at step 446 where the processing
module retrieves a set of base key slices utilizing the base key
identifier. For example, the processing module determines
identity of a set of other storage devices based on the base key
identifier, sends a set of key slice retrieval requests to the set
of other storage devices, and receives at least a decode thresh-
old number of base key slices to recover the base key (e.g.,
from the other storage devices and/or a local memory of the
storage device). The method continues at step 448 where the
processing module decodes the set of base key slices in accor-
dance with an error encoding function to recover a base key.

The method continues at step 450 where the processing
module generates an access specific key based on the recov-
ered base key and the content specific information. When
receiving the plurality of access requests, the processing
module generates another unique access specific key for each
of'the plurality of access requests based on the recovered base
key and a corresponding one of the plurality of content spe-
cific information. For example, the processing module per-
forms a function on the recovered base key and the corre-
sponding one of the plurality of content specific information
to produce the access specific key. The function includes at
least one of a deterministic function, a logical function, and a
mathematical function. As another example, the processing
module performs an encrypting function on the recovered
base key and the corresponding one of the plurality of content
specific information to produce the access specific key. As a
specific example, the processing module encrypts the recov-
ered base key utilizing the content specific information to
produce the access specific key. As another specific example,
the processing module encrypts the content specific informa-
tion utilizing the recovered base key to produce the access
specific key.

The method continues at step 452 where the processing
module executes the access request regarding the data object
utilizing the access specific key. When receiving the plurality
of'access requests, the processing module executes the one of
the plurality of access requests utilizing the other unique
access specific key. As an example of executing the access
request when the access request includes a read access
request, the processing module sends a read instruction to
memory of the storage device, retrieves an encrypted data
object from the memory in accordance with the read instruc-
tion, decrypts the encrypted data object using the access
specific key to recover the data object, and outputs the recov-
ered data object. As an example of executing the access
request when the access request includes a write access
request, the processing module encrypts the data object using
the access specific key to produce an encrypted data object,
sends a write instruction to memory of the storage device, and
stores the encrypted data object in the memory in accordance
with the write instruction.

FIG. 42A is a schematic block diagram of another embodi-
ment of a distributed computing system that includes a dis-
tributed storage and task network (DSTN) module 22, two or
more to distributed storage and task (DST) units 16, and for
each DST processing unit 16 of the two or more DST unit 16,
a plurality of user devices 14. Each DST processing unit 16

US 9,154,298 B2

49

receives data 40 and/or task requests 38 from the plurality of
user devices 14 and generates data slice accesses (e.g., includ-
ing data slices 460) to the DSTN module 22 and may include
partial tasks 462 when the DST processing unit 16 receives
the task request 38. The DSTN module 22 generates partial
results 464 in response to the partial tasks 462 executed on the
data slices. The DST processing unit 16 forwards at least
some of the partial results 464 to at least one of the plurality
of user devices 14.

Each DST processing unit 16 of the two or more DST
processing unit 16 share performance information 466. The
performance information 466 includes one or more of a uti-
lization of networking resources level, a utilization of pro-
cessing resources level, a utilization of memory resources
level, a capacity level of resources, a capacity level of pro-
cessing resources, and a capacity of memory resources. When
receiving a request (e.g., a slice access request 40, a task
request 38) from a user device 14, a DST processing unit 16
determines whether to internally process the request or to
redirect the request to at least one other DST processing unit
16 of the two or more DST processing unit 16. When redi-
recting the request, the DST processing unit 16 sends redi-
rected data and/or task requests 468 to the other DST pro-
cessing unit 16 for further processing.

In an example of operation, the DST processing unit 16
receives the slice access request 40 from a requesting user
device 14. The DST processing unit 16 determines whether to
internally process the request or to redirect the request based
ona comparison of available resources to a resource threshold
based on the performance information. When the DST pro-
cessing unit 16 determines to redirect the request, the DST
processing unit 16 selects another DST processing unit 16
based on performance information 466 associated with the
other DST processing unit 16 such that a comparison of
available resources of the other DST processing units 16 to
the resource threshold is favorable. Alternatively, the select-
ing may be based on at least one of a round-robin approach, a
predetermination, and a backup DST processing unit identi-
fier associated with the DST processing unit 16. Next, the
DST processing unit 16 facilitates sending the slice access
request 40 to the other DST processing unit 16 for processing.
Alternatively, or in addition to, the DST processing unit 16
generates and sends a redirect response to the requesting user
device 14. The method of operation of the system is discussed
in greater detail with reference to FIG. 42B.

FIG. 42B is a flowchart illustrating an example of process-
ing a distributed storage and task network (DSTN) access
request connection. The method begins at step 470 where a
processing module (e.g., of a distributed storage and task
(DST) client module) receives a distributed storage and task
network (DSTN) access request from a requesting entity. The
access request includes one or more of a requesting entity
identifier (ID), a request type indicator, a required level of
resources, a DSTN address, a data object identifier, and a
request processing entity 1D (e.g., of a preselected DST pro-
cessing unit).

The method continues at step 472 where the processing
module determines whether an available resource level com-
pares favorably to a required resource threshold. The deter-
mining may be based on at least one of a comparison of
available resources to estimated required resources, a com-
parison of available resources to a resource availability
threshold, and a comparison of available resources to a pro-
cessing resource level of availability of an explicitly
requested processing resource. For example, the processing
module determines that the comparison is unfavorable when
the available resource level is less than the required resource

20

25

40

45

50

threshold. When the comparison is unfavorable, the method
continues at step 474 where the processing module deter-
mines available resource levels of a plurality of other request
processing entities (e.g., other DST processing units). The
determining may be based on one or more of a lookup, a
query, receiving information, a test, and obtaining a historic
record.

The method continues at step 476 where the processing
module selects another request processing entity based on an
available resource level corresponding to the other request
processing entity. The selecting may be based on one or more
of resource availability of the other request processing entity
compared to a required resource level, a round-robin
approach, a predetermination, an explicit request, and iden-
tifying the other request processing entity associated with a
most favorable available resource level. The method contin-
ues at step 478 where the processing module facilitates redi-
rection of the DSTN access request to the other request pro-
cessing entity. The facilitating includes at least one of
generating a second access request that includes the DSTN
access request and an identifier of the other request process-
ing entity, sending the second access request to the other
request processing entity, generating a redirect response and
sending the redirect response to the requesting entity, and
forwarding the DSTN access request to the other request
processing entity.

FIG. 43 is a flowchart illustrating an example of rebuilding
a slice. The method begins at step 480 where a processing
module (e.g., of a distributed storage and task (DST) client
module) identifies an encoded data slice for rebuilding. The
identifying includes at least one of identifying a slice error,
receiving a read slice request for a rebuilding process, and
receiving a slice error message. The method continues at step
482 where the processing module determines a level of
required slice confidentiality. Slice confidentiality pertains to
exposure of the encoded data slice. For example, a medium
level of required slice confidentiality refers to a requirement
to not expose encoded data slice while a low level of required
slice confidentiality refers to no requirement to not expose the
encoded data slice. As another example, a high level of
required slice confidentiality refers to a requirement to
encrypt the slice. The determining may be based on one or
more of a lookup based on a slice name of the encoded data
slice for rebuilding, receiving the level, a data type indicator,
and a security indicator.

The method continues at step 484 for the processing mod-
ule determines a slice confidentiality status level. The status
level includes at least one of the slice is encrypted, the slices
not encrypted, the slices obfuscated, the slices not obfuscated
and not encrypted, and the slice that includes raw data or the
slice that does not include raw data. The determining may be
based on where more of analyzing the slice for encryption,
analyzing the slice for obfuscation, an encryption indicator,
an obfuscation indicator, a query, and a lookup.

The method continues at step 486 where the processing
module selects one of a partial rebuilding process or a read-
based rebuilding process based on the level required slice
confidentiality and the slice confidentiality status level. For
example, the processing module selects the partial rebuilding
when a level of required slice confidentiality is high and a
slice confidentiality status level is low. As another example,
the processing module selects the read-based rebuilding pro-
cess when a level of required slice confidentiality is low.

The method continues at step 488 where the processing
module facilitates the selected rebuilding process to rebuild
the encoded data slice for rebuilding. The read-based rebuild-
ing process includes rebuilding a data segment from a set of

US 9,154,298 B2

51

data slices read from a set of distributed storage and task
(DST) execution units and re-encoding the data segment to
produce a rebuilt data slice. Slices may be exposed when
utilizing the read-based rebuilding process. The partial
rebuilding process includes rebuilding the identified encoded
data slice for rebuilding from retrieved partial encoded data
slices generated by a decode threshold number of DST execu-
tion units. Slices are not exposed when utilizing the partial
rebuilding process. The facilitating of the selected rebuilding
process includes at least one of sending a reject message if the
aread slice request for a rebuilding process was received by a
DST execution unit and the selected rebuilding process is the
partial rebuilding process and initiating the selected partial
rebuilding process one initiating the process (e.g., some
request for partial encoded data slices or encoded data slices
to a list of the potential number of DST execution units).

FIG. 44 A is a schematic block diagram of an embodiment
of a data encoding system that includes a deterministic func-
tion 490, a combiner 492, an encryptor 494, and an encoder
496. The deterministic function 490 includes at least one of a
hashing function, a cyclic redundancy check function (CRC),
ahash-based message authentication code (HMAC) function,
and a masked generating (MGF) function. The deterministic
function receives data 498 (e.g., a data segment) and applies
the deterministic function to the data 498 to produce an integ-
rity value 500. When utilizing the HMAC deterministic func-
tion, the deterministic function may utilize a key derived from
the data utilizing another deterministic function.

The combiner 492 combines the data 498 and the integrity
value 500 to produce a data package 502. The combining
includes at least one of interspersing the integrity value 500 in
a plurality of locations across the data 498 such that at least
two slices of a subsequently produced slice includes at least a
portion of the integrity value 500, inserting the integrity value
500 in one location of the data 498, appending the integrity
value 500 to the data 498, and pre-appending the integrity
value 500 to the data 498.

The encryptor 494 may determine whether the data pack-
age 502 includes data 498 that has already been encrypted.
When the encryptor 494 detects that the data 498 has already
been encrypted, the encryptor 494 passes the data package
502 through to the encoder 496. When the encryptor 494
detects that the data 498 has not already been encrypted, the
encryptor 494 encrypts the data package 502 to produce a
secure package 504 utilizing at least one of an encryption
algorithm, an all or nothing transformation (AONT) function,
a mathematical function, and a logical function (e.g., an
exclusive OR function). The encoder 496 encodes the secure
package 504 utilizing a dispersed storage error coding func-
tion to produce a set of slices. A method of operation corre-
sponding to the data encoding system is discussed in greater
detail with reference to F1G. 44C.

FIG. 44B is a schematic block diagram of an embodiment
of a data decoding system that includes a decoder 508, a
decryptor 510, a de-combiner 512, a deterministic function
490, and a validator 514. The decoder 508 receives a set of
slices 506 and decodes the set of slices 506 utilizing a dis-
persed storage error coding function to produce a secure
package 504. The decryptor 510 decrypts the secure package
504 to produce a data package 502 utilizing at least one of an
encryption algorithm, an all or nothing transformation
(AONT) function, a mathematical function, and a logical
function (e.g., an exclusive OR function). The data package
502 was produced by combining an integrity value with data
by at least one of interspersing the integrity value in a plurality
of locations across the data such that at least two slices of a
subsequently produced slice includes at least a portion of the

25

30

40

45

55

52

integrity value, inserting the integrity value in one location of
the data, appending the integrity value to the data, and pre-
appending the integrity value to the data.

The de-combiner 512 de-combines portions of the data
package 502 to produce data 498 and a received integrity
value 516. The de-combining includes identifying a combin-
ing approach utilized to generate the data package. The iden-
tifying may be based on one or more of detecting the com-
bining approach, a lookup, a predetermination, and receiving
the approach. The deterministic function 490 includes at least
one of a hashing function, a cyclic redundancy check function
(CRC), a hash-based message authentication code (HMAC)
function, and a masked generating (MGF) function. The
deterministic function 490 applies the deterministic function
to the data 498 to produce a calculated integrity value 518.
The validator 514 validates the data 498 to produce a validity
indicator 520 based on a comparison of the received integrity
value 516 to the calculated integrity value 518. For example,
the validator 514 generates the validity indicator 520 to indi-
cate that the data 498 is valid when the received integrity
value 516 is substantially the same as the calculated integrity
value 518. A method operation of the data decoding system is
described in greater detail with reference to FIG. 44D.

FIG. 44C is aflowchart illustrating an example of encoding
data. The method begins at step 522 where a processing
module (e.g., of a distributed storage and task (DST) client
module) performs a deterministic function on data for storage
to produce an integrity value. The method continues at step
524 where the processing module combines the data and the
integrity value in accordance with a combining function to
produce a data package. The processing module may obtain
the combining function based on at least one of a predeter-
mination, a retrieval, receiving, and a determination based on
at least one of a data type, a data size indicator, a data priority
level, a dispersal function, dispersal parameters, and a data
security level requirement. For example, the processing mod-
ule determines the combining function to include partitioning
the integrity value into 1000 portions and interspersing the
1000 portions evenly across the data when the data security
level requirement indicates a high level of required security.

The method continues at step 526 where the processing
module determines whether to encrypt the data package. The
determining is based on at least one of a lookup, a query,
receiving an encryption indicator, and testing the data to
determine if the data is already encrypted. The method
branches to step 530 when the processing module determines
to encrypt the data package. The method continues to step 528
when the processing module determines not to encrypt the
data package. The method continues at step 528 where the
processing module encodes the data package to produce a set
of'slices utilizing a dispersed storage error coding function.

When encrypting the data package, the method continues
at step 530 where the processing module determines an
encryption approach. The determining may be based on at
least one of a lookup, a query, and receiving the approach. The
method continues at step 532 where the processing module
encrypts the data package in accordance with the encryption
approach to produce a secure package. The method continues
at step 534 where the processing module encodes the secure
package to produce the set of slices utilizing the dispersed
storage error coding function.

FIG. 44D is a flowchart illustrating an example of decoding
data. The method begins at step 536 where a processing
module (e.g., of a distributed storage and task (DST) client
module) decodes a set of slices to produce a secure package
utilizing a dispersed storage error coding function. The
method continues at step 538 where the processing module

US 9,154,298 B2

53

identifies an encryption approach associated with the secure
package. The identifying may be based on at least one of a
determination, a lookup, a query, and receiving the approach.
The method continues at step 540 where the processing mod-
ule decrypts the secure package in accordance with the
encryption approach to produce a data package. For example,
when utilizing a reverse all or nothing transformation as the
encryption approach, processing module the combines the
secure package to produce encrypted data and a masked key.
Next, the processing module performs an exclusive OR func-
tion on a hash of the encrypted data and the master key to
produce a key. Next, the processing module decrypts the
encrypted data utilizing the key to produce the data package.

The method continues at step 542 where the processing
module de-combines the data package in accordance with a
combining function to reproduce data and a received integrity
value. The de-combining includes identifying the combining
function based on at least one of a lookup, a query, and
receiving a combining function. The method continues at step
544 where the processing module performs a deterministic
function on the data to produce a calculated integrity value.
The method continues at step 546 where the processing mod-
ule indicates validity of the reproduce data based on a com-
parison of the received integrity value and the calculated
integrity value. For example, the processing module produces
a validity indicator that indicates that the reproduce data is
valid when the comparison indicates that the received integ-
rity value and the calculated integrity value are substantially
the same.

FIG. 45 is a flowchart illustrating an example of storing
data. The method begins at step 548 where a processing
module (e.g., of a distributed storage and task (DST) client
module) receives a data object for storage in a dispersed
storage and task network (DSTN) module. The data object
includes at least one of a data file, a metadata file, a segment
allocation table file, and an index node file. The method
continues at step 550 where the processing module deter-
mines a required retrieval reliability level associated with the
data object. A higher than average required retrieval reliabil-
ity level may be associated with at least one of the metadata
file, a segment allocation table file, and the index node file.
The determining includes at least one of a lookup, receiving,
a query, accessing a historical reliability record, and retriev-
ing.

The method continues at step 552 where the processing
module determines baseline dispersal parameters for storage
of the data object utilizing a dispersed storage error coding
function. The baseline dispersal parameters includes one or
more of a pillar width value, a decode threshold value, and an
encoding matrix. The determining may be based on one or
more of the required retrieval reliability level associated with
the data object, a lookup, a predetermination, and receiving.
The method continues at step 554 where the processing mod-
ule determines a write threshold value for storage of the data
object utilizing the dispersed storage error coding function
based on the required retrieval reliability level. The determin-
ing may be based on one or more of a predetermination, a
lookup, a calculation, receiving, a query, and retrieving. For
example, the processing module determines a higher than
average right special value for a higher required retrieval
reliability level.

The method continues at step 556 where the processing
module encodes the data object utilizing the dispersed storage
error coding function in accordance with the baseline dis-
persal parameters to produce a plurality of sets of encoded
data slices. For each set of encoded data slices of the plurality
of sets of encoded data slices, the method continues at step

10

15

20

25

30

35

40

45

50

55

60

65

54

558 where the processing module generates a set of write slice
requests that includes the set of encoded data slices. The
processing module generates a set of slice names correspond-
ing to the set of encoded data slices. Alternatively, the pro-
cessing module generates a write threshold number of write
slice requests.

The method continues at step 560 where the processing
module outputs at least a write threshold number of write slice
requests to an associated set of dispersed storage and task
(DST) execution units of the DSTN module. The method
continues at step 562 where the processing module receives
write slice responses from the set of DST execution units
(e.g., one write slice response per DST execution unit). A
write slice response includes an indicator with regards to
favorable success or unfavorable failure of the write slice
request. When receiving a write threshold number of favor-
able write slice responses, the method continues at step 564
where the processing module generates a corresponding
number of commit requests (e.g., one commit request for each
DST execution unit corresponding to a received favorable
write slice response). The method continues at step 566 where
the processing module outputs the corresponding number of
commit requests to associated DST execution units (e.g., one
commit request to each DST execution unit corresponding to
the received favorable write slice response).

FIG. 46A is a schematic block diagram of another embodi-
ment of a distributed storage and task network (DSTN) mod-
ule 22 that includes a plurality of distributed storage and task
(DST) execution units 36. Each DST execution unit 36 of the
plurality of DST execution units 36 includes a DST client
module 34 and a plurality of slice memories 568. The slice
memories 568 may be implemented with one or more of a
variety of storage technologies including solid-state memory,
magnetic disk drive memory, and optical disc drive memory.
Each storage technology of the variety of storage technolo-
gies may be associated with an input/output performance
level. The input/output performance level may be associated
with a variety of slice memory modules including one or more
of'aserial interface, a parallel interface, a buffer memory size,
a buffer memory performance level, a disk controller perfor-
mance level, a disk speed level, a head access speed level, and
more technologies well known in the industry that limit over-
all performance of a storage technology.

The DSTN module 22 is operable to rebuild encoded data
slices stored in one or more of the plurality of slice memories
when one or more slice errors are detected. A slice error
includes at least one of a missing slice, a corrupted slice, a
maliciously tampered slice, and a slice associated with a slice
integrity mismatch. Each DST execution unit 36 of the plu-
rality of DST execution units 36 is associated with a DSTN
address range. The DSTN address range includes a slice name
range corresponding to encoded data slices stored within the
DST execution unit 36. For each address range, for each DST
execution unit, each slice memory of the plurality of slice
memories is associated with a portion of the address range in
accordance with a slice name to slice memory device map-
ping. For example, a first slice memory 568 is associated with
address range 1 slices, a second slice memory 568 is associ-
ated with address range 2 slices, a third slice memory 568 is
associated with address range 3 slices, and a fourth slice
memory 568 is associated with address range 4 slices.

The DST client module 34 is operable to schedule an
encoded data slice rebuilding process based on one or more of
anumber of encoded data slices to be rebuilt, a slice memory
technology type, a number of slice errors per slice memory
568, a rebuilding performance level goal, and other processes
requiring access to slice memory 568. The rebuilding perfor-

US 9,154,298 B2

55

mance level goals include one or more of a maximum slice
memory access bandwidth level goal, a load leveling goal, a
total timeframe goal, an individual slice rebuilding timeframe
goal, and a maximum level of processing resources required
goal.

In an example of operation, the DST client module 34
determines whether a number of simultaneous slice errors for
remedy by rebuilding is greater than a slice error threshold
number. When the number of simultaneous slice errors for
remedy by rebuilding is greater than the slice error threshold
number, DST client module 34 determines a schedule for
rebuilding for a plurality of encoded data slices requiring
rebuilding based on one or more of a number of slice errors
associated with each DST execution unit 36, the performance
level of storage technology associated with each DST execu-
tion unit 36, and the slice name to slice memory device
mapping. For example, the DST client module schedules a
higher than average number of rebuilding operations for
encoded data slices associated with slice names in a first
DSTN address range for the first slice memory 568 associated
with higher than average storage technology performance
level and schedules a lower than average number of rebuild-
ing operations for encoded data slices associated with slice
names in a second DSTN address range for the second slice
memory 568 associated with a lower than average storage
technology performance level. Alternatively, another DST
client module 34 associated with another DST execution unit
36 performs such scheduling based on one or more of the
number of'slice errors associated with the DST execution unit
36, an estimated performance level of storage technology
associated with the DST execution unit 36, and an estimated
slice name to slice memory device mapping for the DST
execution unit 36. At least one of the DST execution unit 36
and the other DST execution unit 36 shares rebuilding infor-
mation 570 with the set of DST execution units 36, where the
rebuilding information 570 includes the scheduling.

FIG. 46B is a flowchart illustrating an example of rebuild-
ing slices. The method begins at step 572 where a processing
module (e.g., of a distributed storage and task (DST) client
module) detects a plurality of encoded data slices to be rebuilt
associated with a distributed storage and task (DST) execu-
tion unit. The detecting includes one or more of receiving an
error message, detecting that a retrieved integrity value does
not compare favorably to a calculated integrity value for a
slice, determining that a list response does not compare favor-
ably to another list response corresponding to another DST
execution unit (e.g., list responses in response to outputting
list requests), and receiving a rebuilding request.

The method continues at step 574 where the processing
module identifies a plurality of slice names associated with
the plurality of encoded data slices. The identifying includes
at least one of comparing slice names of two or more list
responses, extracting from an error message, extracting from
aread slice response, and receiving. The method continues at
step 576 where the processing module obtains a slice name to
slice memory device mapping for the DST execution unit.
The obtaining includes at least one of receiving a DSTN
address range assignment for the DST execution unit, esti-
mating address range assignments for each slice memory of a
plurality of slice memories associated with the DST execu-
tion unit (e.g., dividing the address range assignment for the
DST execution unit by a number of slice memories), retriev-
ing, initiating a query, and look up, and receiving.

The method continues at step 578 where the processing
module determines a schedule of rebuilding the plurality of
encoded data slices based on the mapping. The determining
includes selecting a rebuilding order and/or rebuilding time-

30

40

45

55

56

frame of rebuilding steps to achieve a load leveling perfor-
mance goal with regards to accessing each slice memory of
the plurality of slice memories. The method continues at step
580 where the processing module facilitates rebuilding the
plurality of encoded data slices in accordance with the sched-
ule of rebuilding. The facilitating includes at least one of
rebuilding in accordance with the mapping and issuing a
rebuild request to a rebuilding module such that the rebuild-
ing request includes a portion of the schedule of rebuilding.
For instance, the processing module outputs rebuilding infor-
mation to another DST execution unit that includes the por-
tion of the schedule of rebuilding.

FIG. 47 is a flowchart illustrating an example of storing
data and metadata. The method begins at step 582 where a
processing module (e.g., of a distributed storage and task
(DST) client module) receives a data object for storage in a
dispersed storage and task network (DSTN) module. The data
object may include the number of bytes that is one of more
than the average number of bytes of an average data object,
about the same number of bytes of the average data object,
and less than the average number of bytes of the average data
object. The method continues at step 584 where the process-
ing module generates metadata corresponding to the data
object. The generating includes one or more of generating a
source name corresponding to a storage location for the data;
and obtaining metadata parameters of the data object includ-
ing one or more of a data size, a data type, a number of
segments, a segmentation method, and a segment size.

The method continues at step 586 where the processing
module determines whether to store the data and the metadata
as one storage object in the DSTN module. The determining
may be based on the number of bytes of the data object, a
number of bytes of the metadata, a segment size dispersal
parameter, and a size threshold. For example, the processing
module indicates to store the data and the metadata as one
storage object when a sum of the number of bytes of the data
object and the number of bytes of the metadata is less than the
size threshold. As another example, the processing module
indicates to store the data and the metadata as one storage
object when the sum of the number of bytes of the data object
and the number of bytes of the metadata is less than the
segment size dispersal parameter.

When storing the data and the metadata as the one storage
object, the method continues at step 588 where the processing
module combines the data and the metadata to produce the
one storage object in accordance with the combining
approach. The combining approach includes at least one of
pre-appending the metadata to the data, post-appending the
metadata to the data, interleaving the metadata with the data.
The combining approach may further include appending a
metadata pointer to the data. The metadata pointer indicates
the combining approach and/or where the metadata was com-
bined with respect to the data.

The method continues at step 590 where the processing
module encodes the one storage object utilizing a dispersed
storage error coding function to produce a set of slices. The
encoding may include padding a segment with filler bytes
(e.g., a fixed pattern, all ones, all zeros, a random pattern)
when the encoding produces a number of bytes that is less
than a segment size number of bytes. The method continues at
step 592 where the processing module facilitates storage of
the set of slices in the DSTN module. The facilitating includes
generating a set of slice names corresponding to the set of
slices, generating a set of write slice requests that includes the
set of slices and the set of slice names, and outputting the set
of'write slice requests to the DSTN module. The method may

US 9,154,298 B2

57

provide a system-level efficiency improvement by storing
metadata and data in a single set of slices in the DSTN
module.

FIG. 48A is a schematic block diagram of an embodiment
of a dispersed storage network system that includes an out-
bound distributed storage and task (DST) processing 80, a
distributed storage and task network (DSTN) module 22, and
an inbound DST processing 82. The DSTN module 22
includes a storage pool 596 that includes a plurality of DST
execution units 36. The outbound DST processing 80 per-
forms storage processing on data 92 to produce one or more
encoded data slice sets 1-S for storage in the storage pool 596,
where each encoded data slice sets includes a set of encoded
data slices. The inbound DST processing 82 retrieves at least
a decode threshold number of encoded data slices for each of
at least a threshold number of encoded data slice sets for
recovery processing to reproduce the data 92 as recovered
data 594.

In an example of storage processing, the outbound DST
processing 80 encodes the data 92 to produce a plurality of
data portions such that recovery of a threshold number of the
data portions is required to recover the data 92. The outbound
DST processing 80 dispersed storage error encodes each data
portion to produce a corresponding one or more sets of
encoded data slices. For each data portion, the outbound DST
processing 80 selects a set of DST execution units 36 to form
a corresponding DST execution unit set. For instance, the
outbound DST processing 80 selects a set of 16 DST execu-
tion units 36 utilizing a dispersed storage network (DSN)
address generation function to form a DST execution unit set
1 for storage of the corresponding one or more sets of encoded
data slices of a first data portion. The outbound DST process-
ing 80 sends the one or more sets of encoded data slices to the
DST execution unit set 1 using one or more sets of DSN
addresses produced by the DSN address generation function.
An example of sending sets of encoded data slices to DST
execution unit sets using the DSN addresses is discussed in
greater detail with reference to FIG. 48B.

The DSN address generation function includes generating
a preliminary DSN address based on the encoding and a
unique source name assigned to the data portion, mapping the
preliminary DSN address to a DSN address for utilization
within the storage pool 596, where the DSN address is asso-
ciated with a particular DST execution unit 36. For instance,
for afirst set of encoded data slices of the first data portion, the
outbound DST processing 80 assigns a first unique source
name associated with the first data portion. Next, the out-
bound DST processing 80 generates a pillar field entry for
each of the set of encoded data slices (e.g., 1-4 when pillar
width of the encoding is 4). The outbound DST processing 80
combines the pillar field entries and the first unique source
name to produce a set of preliminary DSN addresses. Next,
the DST processing 80 maps each of the preliminary DSN
addresses to a corresponding DSN address using the DSN
address generation function. For instance, the DST process-
ing 80 performs a table lookup to map a pillar 1 preliminary
DSN address to a 6th of eight pillars of the DSN addresses, a
pillar 2 preliminary DSN address to a 3rd pillar of the DSN
addresses, a pillar 3 preliminary DSN address to a 7th pillar of
the DSN addresses, and a pillar 4 preliminary DSN address to
a st pillar of the DSN addresses. Having generated a set of
DSN addresses for the set of encoded data slices, the out-
bound DST processing 80 identifies DST execution units
associated with the set of DSN addresses (e.g., a table
lookup).

In another example of storage processing, the outbound
DST processing 80 encodes each data portion to produce a

25

30

40

45

55

65

58

plurality of data segments. The outbound DST processing 80
dispersed storage error encodes each data segment of each of
the plurality of data segments to produce corresponding sets
of encoded data slices for each data segment. Having pro-
duced the sets of encoded data slices, the outbound DST
processing 80 selects the DST execution unit set 1 for storage
of sets of encoded data slices associated with the plurality of
data segments of the first data portion and selects a DST
execution unit set 2 for storage of other sets of encoded data
slices associated with another plurality of data segments of a
second data portion.

In an example of recovery processing, the inbound DST
processing 82 accesses one or more sets of DST execution
units of the storage pool 596 to retrieve at least a decode
threshold number of encoded data slices for each set of stor-
age encoded data slices. For instance, the inbound DST pro-
cessing 82 retrieves a decode threshold number of encoded
data slices corresponding for all data portions of the plurality
of data portions when the threshold associated with the plu-
rality data portions is equivalent to the number of data por-
tions. The inbound DST processing 82 dispersed storage error
decodes each decode threshold number of encoded data slices
to reproduce the data 92 as recovered data 594.

FIG. 48B is a schematic block diagram of another embodi-
ment of a dispersed storage network system that includes the
outbound DST processing 80 and storage pool 596 of FIG.
48A. In an example of outputting sets of encoded data slices
to the storage pool 596, the outbound DST processing 80
produces two sets of slices (e.g., slice set 1: data slice 1__1,
dataslice 1_ 2, dataslice 1_ 3, dataslice 1__4, and slice set 2:
data slice 2__1, data slice 2_ 2, data slice 2_ 3, data slice
2_ 4). The outbound DST processing 80 produces two sets of
DSN addresses corresponding to the two sets of encoded data
slices, where each DSN address is associated with a DSN
address range of a DST execution unit of the storage pool 596
as well as a unique slice set. For instance, a DSN address 7__1
is produced for dataslice 1__3 of'the slice set 1, where the data
slice 1_ 3 is to be stored in a DST execution unit 7 associated
with a 7th address range. In another instance, a DSN address
7_2isproduced fordataslice2 2 of'thesslice set 2, where the
data slice 2_ 2 is to be stored in the DST execution unit 7
associated with the seventh address range.

The DST execution units associated with a common slice
set form a DST execution unit set. For example, DST execu-
tion units 1, 3, 6, and 7 form DST execution unit set 1 asso-
ciated with the slice set 1 and DST execution units 2, 4, 7, and
8 form DST execution unit set 2 associated with the slice set
2. A single DST execution unit may be associated with any
number of DST execution unit sets (e.g., 0, 1, 2, . . . sets). For
instance, DST execution unit 7 is associated with both DST
execution unit sets 1 and 2. In another instance, DST execu-
tion unit 5 is not associated with either of DST execution unit
set 1 and 2. A single DST execution unit typically stores one
encoded data slice per set of encoded data slices when asso-
ciated with the set of encoded data slices to improve system
reliability.

The storage pool 596 may include any number of DST
executionunits. The outbound DST processing 80 determines
anumber of address ranges based on one or more of a number
of the set of encoded data slices, a DSN address generation
function, a predetermination, a table lookup, DST execution
unit availability information, a vault identifier, a requesting
entity identifier, and a system performance indicator. For
instance, the outbound DST processing 80 determines to
utilize eight DSN address ranges when the number of pillars
of the set of encoded data slices is four. In another instance,
the outbound DST processing 80 determines to utilize 32

US 9,154,298 B2

59

DSN address ranges when the number of pillars of the set of
encoded data slices is 16 and the DSN address generation
function indicates to double the number of pillars of the set of
encoded data slices to produce the number of DSN address
ranges.

FIG. 48C is adiagram illustrating an example of generating
a dispersed storage network address (DSN) from a prelimi-
nary DSN address using an address generating module 598.
The address generating module 598 performs the address
generating function as introduced in FIG. 48A. In the
example, a preliminary DSN address is generated for the data
slice 1__1 of FIG. 48B and the address generating module 598
applies the address generating function to the preliminary
DSN address 1 1 to produce the DSN address 6 1 of FIG.
48B. The data slice 1__1 corresponds to a first encoded data
slice of a first data segment of the first data portion. The
preliminary DSN address 1__1 is generated to include a pillar
field entry of 1 (e.g., first encoded data slice), a source name
field entry of the first unique source name 1, and a segment
field entry of segment 1.

The address generating module 598 performs the address
generating function on the preliminary DSN address 1_1 to
generate the DSN address 61 to include a slice index field
entry of 6, a source name field entry of source name 1_A, and
a segment field entry of segment 1 corresponding to segment
1 of the preliminary DSN address 1__1. For the example, the
address generating module 598 performs the address gener-
ating function on the pillar field entry of the luminary DSN
address 1__1 by adding an offset of 5 to the pillar 1 entry to
produce the slice index entry of 5. As another example, the
address generating module 598 performs address generating
function on the unique source name 1 entry of the source
name field of the preliminary DSN address 1 1 by adding
another offset to the unique source name 1 to produce the
source name 1_A based, where the offset is based in part on
the offset utilized to produce the pillar entry of the DSN
address 6__1. For instance, the address generating module
598 generates the source name 1_A to correspond to a DSN
address range of a sixth storage unit associated with slice
index 6. As such, the DSN address 6__1 falls within the DSN
address range of the sixth storage unit.

FIG. 48D is a diagram illustrating a dispersed storage
network (DSN) address generation function 604 that includes
applying a DSN address generating function introduced in
FIG. 48A to a preliminary DSN address 1 of a preliminary
addressing pinwheel 600 to produce a DSN address 6 of a
DSN addressing pinwheel 602. The preliminary addressing
pinwheel 600 represents a total DSN addressing range
wrapped into a circle where a beginning of'the circle at the top
of'the preliminary addressing pinwheel 600 represents a pre-
liminary addressing zero (PREADDR 0) for a starting point
of the DSN address range and an end of the circle at the top
represents a preliminary addressing maximum (PREADDR
MAX).

The preliminary addressing pinwheel 600 may be divided
into equal portions corresponding to a number of pillars of
preliminary DSN addresses. For example, the preliminary
addressing pinwheel 600 is divided into four DSN address
ranges corresponding to four pillars of preliminary DSN
addresses associated with the encoding of data using a pillar
width of four. Each preliminary DSN address of a set of
preliminary DSN addresses corresponds to one of the DSN
address ranges. For example, a first preliminary DSN address
(e.g., preliminary DSN address 1) is associated with a first
DSN address range (e.g., pillar 1) that starts at PREADDR 0
and ends at a PREADDR 1/4 MAX, a second preliminary
DSN address is associated with a second DSN address range

10

15

20

25

30

35

40

45

50

55

60

65

60

(e.g., pillar 2) that starts at PREADDR 1/4 MAX and ends at
a PREADDR 2/4 MAX, a third preliminary DSN address is
associated with a third DSN address range (e.g., pillar 3) that
starts at PREADDR 2/4 MAX and ends at a PREADDR 3/4
MAX, and a fourth preliminary DSN address is associated
with a fourth DSN address range (e.g., pillar 4) that starts at
PREADDR 4/4 MAX and ends at the PREADDR MAX.

The DSN addressing pinwheel 602 represents another total
DSN addressing range wrapped into another circle where a
beginning of the other circle at the top of the DSN addressing
pinwheel 602 represents an address zero (ADDR 0) for a
starting point of the other DSN address range and an end of
the other circle at the top represents an address maximum
(ADDR MAX). The DSN addressing pinwheel 602 may be
divided into equal portions corresponding to a number of
pillars of DSN addresses utilized for storage of encoded data
slices in associated storage units. For example, the DSN
addressing pinwheel 602 is divided into eight DSN address
ranges corresponding to a pillars of DSN addresses associ-
ated with the storage of the encoded data slices amongst eight
storage units.

Each DSN address of the DSN addressing pinwheel 602
corresponds a DSN address range of the DSN addressing
pinwheel 602, where each DSN address range is associated
with a storage unit. For example, a first DSN address falling
within a first DSN address range (e.g., pillar 1) that starts at
PREADDR 0 and ends at a ADDR 1/8 MAX is associated
with a storage unit 1 (SU1), a second DSN address falling
within a second DSN address range (e.g., pillar 2) that starts
at ADDR 1/8 MAX and ends at a ADDR 2/8 MAX is asso-
ciated with a storage unit 2 (SU2), athird DSN address falling
within a third DSN address range (e.g., pillar 3) that starts at
ADDR 2/8 MAX and ends at a ADDR 3/8 MAX is associated
with a storage unit 3 (SU3), a fourth DSN address falling
within a fourth DSN address range (e.g., pillar 4) that starts at
ADDR 3/8 MAX and ends at a ADDR 4/8 MAX is associated
with a storage unit 4 (SU4), a fifth DSN address falling within
a fifth DSN address range (e.g., pillar 5) that starts at ADDR
4/8 MAX and ends at a ADDR 5/8 MAX is associated with a
storage unit 5 (SU5), a sixth DSN address falling within a
sixth DSN address range (e.g., pillar 6) that starts at ADDR
5/8 MAX and ends at a ADDR 6/8 MAX is associated witha
storage unit 6 (SU6), a seventh DSN address falling within a
seventh DSN address range (e.g., pillar 7) that starts at ADDR
6/8 MAX and ends at a ADDR 7/8 MAX is associated with a
storage unit 7 (SU7), and an eighth DSN address falling
within an eighth DSN address range (e.g., pillar 8) that starts
atADDR 7/8 MAX and ends at the ADDR MAX is associated
with a storage unit 8 (SUB).

The DSN address generating function 604 is applied to the
preliminary DSN address of the preliminary addressing pin-
wheel 600 to produce a corresponding DSN address of the
DSN addressing pinwheel 602. The DSN address generating
function includes at least one of a pinwheel function (e.g.,
adding an offset function), a deterministic function, a math-
ematical function, and a logical function. For example, when
utilizing the pinwheel function, a pillar offset is applied to the
pillar number of the preliminary DSN address of the prelimi-
nary addressing pinwheel 600 to generate a pillar number of
the DSN address of the DSN addressing pinwheel 602. For
instance, a pillar offset of 5 is added to pillar 1 of preliminary
DSN address 1 to produce pillar 6 of the DSN address 6. As
another example, a source name offset is applied to a source
name of the preliminary DSN address to produce a source
name of the DSN address such that a source name of the DSN
address falls within a DSN address range associated with the
pillar number of the DSN address. For instance, the source

US 9,154,298 B2

61

name offset is applied to a source name of preliminary DSN
address 1 to generate the source name of the DSN address 6
such that the DSN address 6 falls within the address range of
pillar 6 of'the DSN addressing pinwheel 602, where pillar 6 is
associated with storage unit 6.

FIG. 48E is a diagram illustrating examples of portion
addressing that includes a portion 1 addressing 606 and a
portion 2 addressing 608. Each of the portion 1-2 addressing
606-608 illustrates application of the DSN addressing gen-
eration function 604 discussed in FIG. 48E to one or more sets
of'preliminary DSN addresses to generate corresponding one
or more sets of DSN addresses. The one or more sets of DSN
addresses are utilized for storing one or more corresponding
sets of encoded data slices in a corresponding set of storage
units, where, for each of the one or more corresponding sets of
encoded data slices, a corresponding data portion is encoded
to produce the one or more corresponding sets of encoded
data slices.

In an example, a first data portion is encoded to produce a
first plurality of data segments. Each data segment is encoded
using a dispersed storage error coding function to produce a
set of encoded data slices of a first plurality of sets of encoded
data slices. A first plurality of sets of preliminary DSN
addresses are generated for the first plurality of sets of
encoded data slices using a common unique source name. For
instance, a first set of preliminary DSN addresses 1 1
through 1 4 for a first set of encoded data slices includes a
unique source name 1 corresponding to the first data portion,
pillar numbers 1-4, and a segment 1 entry.

The DSN address generation function 604 is applied to the
preliminary DSN addresses to produce the DSN addresses.
For example, the DSN address generation function 604 is
applied to the first plurality of sets of preliminary DSN
addresses to produce a first plurality of sets of DSN addresses,
where the first plurality of sets of DSN addresses share a
common source name, each set of DSN addresses shares a
common segment number, and each DSN address associated
with a common pillar number of a corresponding preliminary
DSN address set is associated with a common slice index
number. For instance, the DSN address generation function
604 is applied to the first set of preliminary DSN addresses
1_1 through 1_ 4 to generate a first set of DSN addresses
6_1,3_1,7_1,and 1__1 where each of the DSN addresses
includes a segment 1 indicator, a common source name 1_A,
and a slice index that corresponds to a pillar number of a
corresponding preliminary DSN address (e.g., slice index 6
for pillar 1, slice index 3 for pillar 2, slice index 7 for pillar 3,
and slice index 1 for pillar 4). As another instance, the DSN
address generation function 604 is applied to a second set of
preliminary DSN addresses to generate a second set of DSN
addresses 6_2,3_2,7 2, and 1_ 2 where each of the DSN
addresses includes a segment 2 indicator, a common source
name 1_A for data portion 1, and a slice index that corre-
sponds to a pillar number of a corresponding preliminary
DSN address as in the first set of DSN addresses (e.g., slice
index 6 for pillar 1, slice index 3 for pillar 2, slice index 7 for
pillar 3, and slice index 1 for pillar 4).

In another example, a second data portion is encoded to
produce a second plurality of data segments. Each data seg-
ment is encoded using the dispersed storage error coding
function to produce a set of encoded data slices of a second
plurality of sets of encoded data slices. A second plurality of
sets of preliminary DSN addresses are generated for the sec-
ond plurality of sets of encoded data slices using a second
common unique source name. For instance, a first set of
preliminary DSN addresses 2__1 through 2_ 4 for a first set of

30

35

40

45

62

encoded data slices includes a unique source name 2 corre-
sponding to the second data portion, pillar numbers 1-4, and
a segment 1 entry.

The DSN address generation function 604 is applied to the
second preliminary DSN addresses to produce the DSN
addresses. For example, the DSN address generation function
604 is applied to the second plurality of sets of preliminary
DSN addresses to produce a second plurality of sets of DSN
addresses, where the second plurality of sets of DSN
addresses share a common source name (e.g., source name
2_A), each set of DSN addresses shares a common segment
number, and each DSN address associated with a common
pillar number of a corresponding second preliminary DSN
address set is associated with a common slice index number.
For instance, the DSN address generation function 604 is
applied to the first set of portion 2 preliminary DSN addresses
2_ 1 through 2 4 to generate a first set of DSN addresses
4_1,7_1,2 1, and 8__1 where each of the DSN addresses
includes a segment 1 indicator, a common source name 2_A,
and a slice index that corresponds to a pillar number of a
corresponding preliminary DSN address (e.g., slice index 4
for pillar 1, slice index 7 for pillar 2, slice index 2 for pillar 3,
and slice index 8 for pillar 4). As another instance, the DSN
address generation function 604 is applied to a second set of
portion 2 preliminary DSN addresses to generate a second set
of DSN addresses4_ 2,7_ 2,2 2,and8_ 2 where each ofthe
DSN addresses includes a segment 2 indicator, a common
source name 2_A for data portion 2, and a slice index that
corresponds to a pillar number of a corresponding prelimi-
nary DSN address as in the first set of DSN addresses for
portion 2 (e.g., slice index 4 for pillar 1, slice index 7 for pillar
2, slice index 2 for pillar 3, and slice index 8 for pillar 4).

FIG. 48F is a schematic block diagram of another embodi-
ment of a dispersed storage network (DSN) system that
includes a computing device 610 and a DSN 612. The com-
puting device 610 may be the distributed storage and task
(DST) processing unit 16 of FIG. 1, and includes an outbound
DST processing 80. The outbound DST processing 80
includes an encoding module 614, a first data portion module
616, a second data portion module 618, a third data portion
module 620, and may include further data portion modules.
Alternatively a single data portion module may include each
of'the first, second, third, data portion modules 616-620. The
DSN 612 includes a storage pool 596 that includes a plurality
of DST execution units 36. The outbound DST processing 80
selects the DST execution units 36 to form one or more DST
execution unit sets. For example the first data portion module
616 selects DST execution units 36 to form DST execution
unit set 1, the second data portion module 618 selects DST
execution units 36 to form DST execution unit set 2, and the
third data portion module 620 selects DST execution units 36
to form DST execution unit set 3. The selecting of the DST
execution units 36 may result in a common DST execution
unit 36 being selected for two or more DST execution unit
sets.

In an example of encoding a data file 622 (e.g., video,
streaming data, audio, text, images, one or more electronic
documents, a collection of information such as user names,
passwords, credit card information, etc.), the encoding mod-
ule 614 encodes the data file 622 into a plurality of data
portions 1-3, etc., where a threshold number of the data por-
tions are required to reconstruct the data file 622. The thresh-
old number may include any number from one data portion to
all data portions. Each data portion may include one or more
data segments. As a specific example, the encoding module
614 divides the data file 622 into the plurality of data portions.
As another specific example, the encoding module 614

US 9,154,298 B2

63

encrypts the data file 622 in accordance with a key to produce
an encrypted data file and divides the encrypted data file into
the plurality of data portions. The encoding module 614 may
obtain the key in a variety of ways including at least one of
retrieving from a key management system, retrieving from a
memory, applying a deterministic function (e.g., a hashing
function, a hash-based message authentication code function,
amask generating function, a sponge function) to a data name
associated with the data file 622, and receiving the key.

As yet another specific example of encoding the data file
622, the encoding module 614 encrypts the data file 622 in
accordance with the key to produce the encrypted data file,
combines a representation of the key (e.g., the key itself, an
obfuscated key) with encrypted data file to produce a com-
bined data file, and divides the combined data file into the
plurality of data portions. The encoding module 614 may
obtain the representation of the key by generating the repre-
sentation of the key. For example, the encoding module 614
performs another deterministic function on the encrypted
data to produce transformed data and masks (e.g., using an
exclusive OR logical function) the key using the transformed
data to produce the representation of the key. As a still further
specific example of encoding the data file 622, the encoding
module 614 dispersed storage error encodes the data file 622
to produce the plurality of data portions. For instance, the
encoding module 614 dispersed storage encodes the data file
622 to produce a plurality of data segments as the plurality of
data portions. As yet a still further specific example of encod-
ing the data file 622, the encoding module 614 performs a
secret sharing function (e.g., Shamir) on the data file 622 to
produce the plurality of data portions.

Each data portion may include one or more data segments.
Each data portion may be further encoded to produce further
data portions. For example, the encoding module 614 may
segment a ninth data portion to produce one data segment as
a further data portion. As another example, encoding module
614 may segment the ninth data portion to produce four data
segments as further data portions of the ninth data portion. As
yet another example, the encoding module 614 may encode a
tenth data portion to produce five data segments as five further
data portions.

In an example of processing a first data portion (e.g., data
portion 1) of the plurality of data portions 1-3, etc., when each
data portion includes a single data segment or a plurality of
data segments, the first data portion module 616, for the first
data portion, assigns a first unique source name to the first
data portion. The source name includes a portion of a DSN
address utilized to store slices in the DSN 612. For example,
the source name includes a vault identifier (ID) associated
with a requesting entity and an object number that is associ-
ated with the data file 622. As an example of assigning the first
unique source name, the first data portion module 616 gener-
ates the first unique source name based on a name of the data
file 622. For instance, the first data portion module 616 per-
forms yet another deterministic function on the name to pro-
duce the object number and combines the object number and
the vault ID associated with the requesting entity to produce
the first unique source name. In another instance, the first data
portion module 616 generates the object number based on a
random number and combines the object number with the
vault ID associated with a requesting entity to produce the
first unique source name.

Having assigned the first unique source name, the first data
portion module 616 dispersed storage error encodes the first
data portion to produce one or more sets of encoded data
slices 624. A threshold number of encoded data slices for each
of'the one or more sets of encoded data slices 624 are required

25

35

40

45

55

64

to be retrieved to facilitate recovery of the first data portion.
The first data portion module 616 generates (e.g., selects,
identifies, calculates, etc.) one or more sets of DSN addresses
for the one or more sets of encoded data slices 624 based on
the first unique source name. As a specific example of gener-
ating DSN addresses, the first data portion module 616 gen-
erates a set of DSN addresses of the one or more sets of DSN
addresses by utilizing an addressing pinwheel to generate the
set of DSN addresses based on the first unique source name.
For instance, for the set of DSN addresses, the first data
portion module 616 generates a set of preliminary DSN
addresses that includes the first unique source name and a
unique pillar number for each DSN address of the set of DSN
addresses and applies a DSN address generation function
associated with the addressing pinwheel to the set of prelimi-
nary DSN addresses to produce the set of DSN addresses. The
DSN address generation function associated with the
addressing pinwheel transforms (e.g., offsets a pillar number)
each location on a preliminary addressing pinwheel based on
each preliminary DSN address to each location on a DSN
addressing pinwheel to produce each is DSN address. For
instance, a pillar one location on the preliminary addressing
wheel translates to a pillar six location on the DSN addressing
pinwheel when the transforming includes offsetting the pillar
number by five.

As an alternative specific example of generating DSN
addresses, the first data portion module 616 performs yet
another deterministic function on the first unique source
name to generate the set of DSN addresses. For instance, the
first data portion module 616 performs a hashing function on
the first unique source name to produce a source name of the
set of DSN addresses. In another instance, the first data por-
tion module 616 performs a mask generating function on the
pillar number and the first unique source name of the prelimi-
nary DSN address to produce a corresponding slice index
field value and common source name of the set of DSN
addresses. As another alternative specific example of gener-
ating DSN addresses, the first data portion module 616 per-
forms a mathematical function (e.g., add, subtract, divide,
multiply, etc.) on the first unique source name to generate the
set of DSN addresses. For instance, the first data portion
module 616 multiplies the first unique source name by two to
produce the slice index field value and the common source
name of the set of DSN addresses. As yet another alternative
specific example, the first data portion module 616 performs
a logical function (e.g., exclusive OR, OR, AND, NAND) on
the first unique source name to generate the set of DSN
addresses. For instance, the first data portion module 616
applies the exclusive OR function to a combination of the first
unique source name and the pillar number with a transforma-
tion template value (e.g., a predetermined constant) to pro-
duce the set of DSN addresses.

Having generated the one or more sets of DSN addresses,
the first data portion module 616 identifies the DST execution
unit set 1 (e.g., the first set of storage units of the DSN 612)
based on the one or more sets of DSN addresses. A storage
unit of the first set of storage units has an assigned DSN
address range in which a corresponding DSN address of one
of the one or more sets of DSN addresses falls. As a specific
example, the first data portion module 616 accesses a DSN
address-to-physical location table to identify each DST
execution unit 36 based on a corresponding DSN address. As
another specific example, the first data portion module 616
identifies a mapping of the DSN addressing pinwheel to DST
execution units 36. For instance, the first data portion module
616 identifies a sixth DST execution unit 36 associated witha
sixth pillar when the DSN addresses associated with the six

US 9,154,298 B2

65

pillar of eight pillars on the DSN addressing pinwheel. Hav-
ing identified the first set of storage units, the first data portion
module sends the one or more sets of encoded data slices 624
to the first set of storage units in accordance with the one or
more sets of DSN addresses.

In an example of processing a second data portion of the
plurality of data portions 1-3, etc., when each data portion
includes the single data segment or the plurality of data seg-
ments, the second data portion module 618, for the second
data portion assigns a second unique source name to the
second data portion (e.g., unique source name per data por-
tion). For instance, the second data portion module 618 gen-
erates the second unique source name based on the name of
the data file. At least one of the encoding module 614, the first
data portion module 616, and the second data portion module
618 links the first and second unique source names to the
name of the data file in at least one of a directory and a
dispersed hierarchical index.

Having assigned the second unique source name to the
second data portion, the second data portion module 618
dispersed storage error encodes the second data portion to
produce a second one or more sets of encoded data slices 626.
A threshold number of encoded data slices for each of the
second one or more sets of encoded data slices are required to
be retrieved to recover the second data portion. The second
data module 618 generates a second one or more sets of DSN
addresses for the second one or more sets of encoded data
slices 626 based on the second unique source name. Since the
first unique source name and second unique source name are
different, unauthorized acquisition of a DSN address of the
one or more sets of DSN addresses yields substantially no
information regarding a DSN address of the second one or
more sets of DSN addresses. Having generated the second
one or more sets of DSN addresses, the second data module
618 identifies the DST execution unit set 2 (e.g., a second set
of storage units of the DSN 612) based on the second one or
more sets of DSN addresses, where a storage unit of the
second set of storage units has an assigned DSN address range
in which a corresponding DSN address of the second one of
the one or more sets of DSN addresses falls. Having identified
the second set of storage units, the second data portion mod-
ule 618 sends the second one or more sets of encoded data
slices to the second set of storage units.

In an example of processing a third data portion of the
plurality of data portions 1-3, etc., when each data portion
includes the single data segment or the plurality of data seg-
ments, the third data portion module 620, for the third data
portion, assigns a third unique source name to the third data
portion. The third data portion module 620 dispersed storage
error encodes the third data portion to produce a third one or
more sets of encoded data slices 628. To recover the third data
portion, a threshold number of encoded data slices for each of
the third one or more sets of encoded data slices 628 are
required to be retrieved. Having encoded the third data por-
tion, the third data portion module 620 generates a third one
or more sets of DSN addresses for the third one or more sets
of encoded data slices 628 based on the third unique source
name. The third data portion module 620 identifies the DST
execution unit set 3 (e.g., a third set of storage units of the
DSN 612) based on the third one or more sets of DSN
addresses, where a storage unit of the third set of storage units
has an assigned address range in which a corresponding DSN
address of the third one of the one or more sets of DSN
addresses falls. Having identified the third set of storage units,
the third data portion module 620 sends the third one or more
sets of encoded data slices 628 to the third set of storage units.

20

30

40

45

66

In another example of processing the third data portion of
the plurality of data portions, when each data portion includes
the single data segment or the plurality of data segments, the
third data portion module 620, for the third data portion
assigns the first unique source name to the third data portion.
The third data portion module 620 dispersed storage error
encodes the third data portion to produce the third one or more
sets of encoded data slices 628, where to recover the third data
portion, a threshold number of encoded data slices for each of
the third one or more sets of encoded data slices 628 are
required to be retrieved. Having encoded the third data por-
tion, the third data portion module 620 generates the third one
or more sets of DSN addresses for the third one or more sets
of encoded data slices 628 based on the first unique source
name. The third data portion module 620 sends the third one
or more sets of encoded data slices 628 to the first set of
storage units in accordance with the third one or more sets of
DSN addresses.

Alternatively, each data portion may only include the plu-
rality of data segments. In an example of processing the first
data portion, when each data portion includes only the plu-
rality of data segments, the first data portion module 616
divides the first data portion into the plurality of data seg-
ments. For instance, the first data portion module 616 divides
the first data portion into twenty 1 MB data segments when a
desired data segment size is 1 MB and the first data portion is
20 MB. For a first data segment of the plurality of data
segments, the first data portion module 616 assigns the first
unique source name to the first data segment. The first data
portion module 616 dispersed storage error encodes the first
data segment to produce a first set of encoded data slices 630
of the one or more sets of encoded data slices. Having
encoded the first data segment, the first data portion module
616 generates a first set of DSN addresses of the one or more
sets of DSN addresses for the first set of encoded data slices
630 based on the first unique source name, where a DSN
address of the first set of DSN addresses falls within the
assigned address range of the storage unit of the first set of
storage units. The first data portion module 616 sends the first
set of encoded data slices 630 to the first set of storage units
(e.g., DST execution unit set 1) in accordance with the first
sets of DSN addresses.

For a second data segment of the plurality of data segments,
the first data portion module 616 assigns the first unique
source name to the second data segment and dispersed storage
error encodes the second data segment to produce a second set
of encoded data slices 632 of the one or more sets of encoded
data slices. The first data portion module 616 generates a
second set of DSN addresses of the one or more sets of DSN
addresses for the second set of encoded data slices based on
the first unique source name, where a DSN address of the
second set of DSN addresses falls within the assigned address
range of the storage unit of the first set of storage units.
Having generated the second set of DSN addresses, the first
data portion module 616 sends the second set of encoded data
slices to the first set of storage units in accordance with the
second sets of DSN addresses.

In another example of processing the first data portion,
when each data portion includes only the plurality of data
segments, the first data portion module 616, for the first data
portion, encodes the first data portion into a plurality of
encoded data segments, where at least a threshold number of
encoded data segments of the plurality of encoded data seg-
ments are required to reconstruct the first data portion. The
encoding includes at least one of a dispersed storage encoding
and a shared secret function encoding (e.g., Shamir). Having
encoded the first data portion, the first data portion module

US 9,154,298 B2

67

616 dispersed storage error encodes the plurality of encoded
data segments to produce a plurality of sets of encoded data
slices 634. For instance, for each data segment, the first data
portion module 616 dispersed storage encodes the data seg-
ment to produce a corresponding set of encoded data slices of
the plurality of sets of encoded data slices 634. Having
encoded the plurality of encoded data segments, the first data
portion module 616 generates a plurality of sets of DSN
addresses for the plurality of sets of encoded data slices 634
based on the first unique source name. The first data portion
module 616 sends the plurality of sets of encoded data slices
634 to the first set of storage units (e.g., DST execution unit
set 1) in accordance with the plurality of sets of DSN
addresses.

Alternatively, each data portion may only include the
single data segment. In an example of processing the first data
portion, when each data portion includes only the single data
segment, the first data portion module 616, for the first data
portion, dispersed storage error encodes the first data portion
to produce the first set of encoded data slices 630, where, to
recover the first data portion, a threshold number of encoded
data slices of the first set of encoded data slices 630 are
required to be retrieved. The first data portion module 616
generates a first set of DSN addresses for the first set of
encoded data slices 630 based on the first unique source
name. The first data portion module 616 sends the first set of
encoded data slices to the first set of storage units in accor-
dance with the first set of DSN addresses.

In an example of processing the second data portion, when
each data portion includes only the single data segment, the
second data portion module 618, for the second data portion,
dispersed storage error encodes the second data portion to
produce the second set of encoded data slices 632, where, to
recover the second data portion, a threshold number of
encoded data slices of the second set of encoded data slices
632 are required to be retrieved. The first data portion module
616 generates a second set of DSN addresses for the second
set of encoded data slices 632 based on the second unique
source name. The first data portion module 616 sends the
second set of encoded data slices 632 to the second set of
storage units in accordance with the second set of DSN
addresses.

FIGS. 48G, H, and I are flowcharts illustrating another
example of storing data, where a data file is stored in a
dispersed storage network (DSN) in a manner to increase
difficulty in hacking the data file. The method begins at step
640 where a processing module (e.g., of the DST processing
unit 16 of FIG. 1) encodes the data file into a plurality of data
portions, where a threshold number of the data portions are
required to reconstruct the data file. The threshold number
may include any number from one to all data portions. For
example, the processing module divides the data file into the
plurality of data portions. As another example, the processing
module encrypts the data file in accordance with a key to
produce an encrypted data file and divides the encrypted data
file into the plurality of data portions. As yet another example,
the processing module encrypts the data file in accordance
with the key to produce the encrypted data file, combines a
representation of the key (e.g., an obfuscated key, a masked
key, an encrypted key, the key itself) with encrypted data file
to produce a combined data file, and divides the combined
data file into the plurality of data portions. As a still further
example, the processing module dispersed storage error
encodes the data file to produce the plurality of data portions.
As yet a still further example, the processing module per-
forms a secret sharing function (e.g., Shamir) on the data file
to produce the plurality of data portions.

35

40

45

68

The data portions may be processed using a variety of
approaches. In one approach, each data portion is encoded to
produce one or more sets of encoded data slices. In another
approach, a plurality of data segments are produced from the
data portions for further processing. The method branches to
starting point “A” of FIG. 481 when the plurality of data
segments are to be produced. The method continues to step
642 when data portions are to be encoded to produce the one
or more sets of encoded data slices.

When the data portions are to be encoded to produce the
one or more sets of encoded data slices, the method continues
at step 642 where the processing module assigns a first unique
source name to a first data portion. The processing module
may generate the first unique source name based on a name of
the data file (e.g., performing a deterministic function on the
name). Each data portion may be encoded to produce a single
set of encoded data slices. The method branches to step 652
when the first data portion is to be encoded to produce the
single set of encoded data slices. The method continues to
step 644 when the first data portion is to be encoded to
produce the one or more sets of encoded data slices.

When the first data portion is to be encoded to produce the
one or more sets of encoded data slices, the method continues
at step 644 where the processing module dispersed storage
error encodes the first data portion to produce the one or more
sets of encoded data slices. A threshold number of encoded
data slices for each of the one or more sets of encoded data
slices are required to be retrieved to recover the first data
portion. The method continues at step 646 where the process-
ing module generates one or more sets of DSN addresses for
the one or more sets of encoded data slices based on the first
unique source name. For example, the processing module
generates a set of DSN addresses of the one or more sets of
DSN addresses by utilizing an addressing pinwheel to gener-
ate the set of DSN addresses based on the first unique source
name (e.g., mapping a preliminary addressing pinwheel to the
DSN addressing pinwheel). As another example, the process-
ing module performs a deterministic function on the first
unique source name to generate the set of DSN addresses. As
yet another example, the processing module performs a math-
ematical function on the first unique source name to generate
the set of DSN addresses. As a further example, the process-
ing module performs a logical function on the first unique
source name to generate the set of DSN addresses.

The method continues at step 648 where the processing
module identifies a first set of storage units of the DSN based
on the one or more sets of DSN addresses. A storage unit of
the first set of storage units has an assigned DSN address
range in which a corresponding DSN address of one of the
one or more sets of DSN addresses falls. For instance, the
processing module identifies the assigned DSN address range
for the corresponding DSN address and identifies the storage
unit associated with the assigned DSN address range (e.g., a
table lookup, issuing a query, receiving a query response).
The method continues at step 650 where the processing mod-
ule sends the one or more sets of encoded data slices to the
first set of storage units in accordance with the one or more
sets of DSN addresses. For instance, the processing module
generates a set of write slice requests that includes the set of
encoded data slices and a set of slice names corresponding to
a single set of DSN addresses, and outputs the set of write
slice requests to the first set of storage units. The method
branches to step 658.

When the first data portion is to be encoded to produce the
single set of encoded data slices, the method continues at step
652 where the processing module dispersed storage error
encodes the first data portion to produce a first set of encoded

US 9,154,298 B2

69

data slices, where to recover the first data portion, a threshold
number of encoded data slices of the first set of encoded data
slices are required to be retrieved. The method continues at
step 654 where the processing module generates a first set of
DSN addresses for the first set of encoded data slices based on
the first unique source name. The method continues at step
656 where the processing module sends the first set of
encoded data slices to the first set of storage units in accor-
dance with the first set of DSN addresses.

The method continues at step 658 where the processing
module, for a second data portion of the plurality of data
portions, assigns a second unique source name to the second
data portion. For example, the processing module generates
the second unique source name based on the name of the data
file (e.g., performing a deterministic function on the name).
The method continues at step 660 where the processing mod-
ule links the first and second unique source names to a name
of the data file within at least one of a file directory and a
dispersed hierarchical index.

A second data portion may be encoded to produce a second
single set of encoded data slices. The method branches to step
670 when the second data portion is to be encoded to produce
the second single set of encoded data slices. The method
continues to step 662 when the second data portion is to be
encoded to produce a second one or more sets of encoded data
slices.

When the second data portion is to be encoded to produce
the second one or more sets of encoded data slices, the method
continues at step 662 where the processing module dispersed
storage error encodes the second data portion to produce the
second one or more sets of encoded data slices, where to
recover the second data portion, a threshold number of
encoded data slices for each of the second one or more sets of
encoded data slices are required to be retrieved. The method
continues at step 664 where the processing module generates
a second one or more sets of DSN addresses for the second
one or more sets of encoded data slices based on the second
unique source name. The method continues at step 666 where
the processing module identifies a second set of storage units
of the DSN based on the second one or more sets of DSN
addresses. A storage unit of the second set of storage units has
an assigned address range in which a corresponding DSN
address of the second one of the one or more sets of DSN
addresses falls. The method continues at step 668 where the
processing module sends the second one or more sets of
encoded data slices to the second set of storage units in
accordance with the second one or more sets of DSN
addresses. As such, unauthorized acquisition of a DSN
address of the one or more sets of DSN addresses yields
substantially no information regarding a DSN address of the
second one or more sets of DSN addresses. The method
branches to entry point “B” of FIG. 48H when processing a
third data portion.

When the second data portion is to be encoded to produce
the second single set of encoded data slices, the method
continues at step 670 where the processing module dispersed
storage error encodes the second data portion to produce a
second set of encoded data slices, where to recover the second
data portion, a threshold number of encoded data slices of the
second set of encoded data slices are required to be retrieved.
The method continues at step 672 where the processing mod-
ule generates a second set of DSN addresses for the second set
of encoded data slices based on the second unique source
name. The method continues at step 674 where the processing
module sends the second set of encoded data slices to the
second set of storage units in accordance with the second set

5

10

15

20

25

30

35

40

45

50

55

60

65

70

of DSN addresses. The method continues to entry point “B”
of FIG. 48H when processing the third data portion.

FIG. 48H is a flowchart illustrating an example of process-
ing the third data portion of FIG. 48G. The processing of the
third data portion may include utilizing the first set of storage
units of FIG. 48G. The method begins at step 686 when the
processing utilizes the first set of storage units. Alternatively,
the processing of the third data portion may include utilizing
a third set of storage units. The method begins at step 676
when the processing utilizes the third set of storage units.

When the processing utilizes the third set of storage units,
the method begins at step 676 where the processing module of
FIG. 48G, for the third data portion of the plurality data
portions, assigns a third unique source name to the third data
portion. The method continues at step 678 where the process-
ing module dispersed storage error encodes the third data
portion to produce a third one or more sets of encoded data
slices. To recover the third data portion, a threshold number of
encoded data slices for each of the third one or more sets of
encoded data slices are required to be retrieved. The method
continues at step 680 where the processing module generates
a third one or more sets of DSN addresses for the third one or
more sets of encoded data slices based on the third unique
source name. The method continues at step 682 where the
processing module identifies the third set of storage units of
the DSN based on the third one or more sets of DSN
addresses. A storage unit of the third set of storage units has an
assigned address range in which a corresponding DSN
address of the third one of the one or more sets of DSN
addresses falls. The method continues at step 684 where the
processing module sends the third one or more sets of
encoded data slices to the third set of storage units in accor-
dance with the third one or more sets of DSN addresses.

When the processing utilizes the first set of storage units,
the method begins at step 686 where the processing module,
for the third data portion of the plurality of data portions,
assigns the first unique source name to the third data portion.
The method continues at step 678 where the processing mod-
ule dispersed storage error encodes the third data portion to
produce the third one or more sets of encoded data slices. The
method continues at step 690 where the processing module
generates the third one or more sets of DSN addresses for the
third one or more sets of encoded data slices based on the first
unique source name. The method continues at step 692 where
the processing module sends the third one or more sets of
encoded data slices to the first set of storage units in accor-
dance with the third one or more sets of DSN addresses.

FIG. 481 is a flowchart illustrating an example of process-
ing the data portions to produce the plurality of data segments
of FIG. 48G. The processing of the data portions may produce
encoded data segments. The method begins at step 712 when
the processing of the data portions produces encoded data
segments. Alternatively, the processing of the data portions
may produce data segments. The method begins at step 694
when the processing of the data portions produces the data
segments.

When the processing of the data portions produces the data
segments, the method begins at step 694 where the processing
module of FIG. 48G divides the first data portion into the
plurality of data segments. The method continues at step 696
where, for a first data segment of the plurality of data seg-
ments, the processing module assigns the first unique source
name to the first data segment. The method continues at step
698 where the processing module dispersed storage error
encodes the first data segment to produce a first set of encoded
data slices of the one or more sets of encoded data slices. The
method continues at step 700 where the processing module

US 9,154,298 B2

71

generates a first set of DSN addresses of the one or more sets
of DSN addresses for the first set of encoded data slices based
on the first unique source name. A DSN address of the first set
of DSN addresses falls within the assigned address range of
the storage unit of the first set of storage units. The method
continues at step 702 where the processing module sends the
first set of encoded data slices to the first set of storage units
in accordance with the first sets of DSN addresses.

The method continues at step 704 where the processing
module, for a second data segment of the plurality of data
segments, assigns the first unique source name to the second
data segment. The method continues at step 706 where the
processing module dispersed storage error encodes the sec-
ond data segment to produce a second set of encoded data
slices of the one or more sets of encoded data slices. The
method continues at step 708 where the processing module
generates a second set of DSN addresses of the one or more
sets of DSN addresses for the second set of encoded data
slices based on the first unique source name. A DSN address
of'the second set of DSN addresses falls within the assigned
address range of the storage unit of the first set of storage
units. The method continues at step 710 where the processing
module sends the second set of encoded data slices to the first
set of storage units in accordance with the second sets of DSN
addresses.

When the processing of the data portions produces the
encoded data segments, the method begins at step 712 where
the processing module, for the first data portion, encodes the
first data portion into the plurality of encoded data segments
(e.g., dispersed storage encoding, secret sharing function
encoding), where at least a threshold number of encoded data
segments of the plurality of encoded data segments are
required to reconstruct the first data portion. The method
continues at step 714 where the processing module dispersed
storage error encodes the plurality of encoded data segments
to produce a plurality of sets of encoded data slices. The
method continues at step 716 where the processing module
generates a plurality of sets of DSN addresses for the plurality
of'sets of encoded data slices based on the first unique source
name. The method continues at step 718 where the processing
module sends the plurality of sets of encoded data slices to the
first set of storage units in accordance with the plurality of sets
of DSN addresses.

FIG. 49A is a schematic block diagram of another embodi-
ment of a distributed computing system that includes a plu-
rality of user devices 14, a distributed storage and task (DST)
processing unit 16, and a distributed storage and task network
(DSTN) module 22. The DST processing unit 16 includes a
DST client module 34 and a pre-fetch segment memory 720.
The system functions to retrieve data 728 from the DSTN
module 22 for one or more of the user devices 14 in response
to one or more limited data request requests 722. A limited
data request 722 includes one or more of a requesting entity
identifier (ID), a data ID, a portion ID, a limited retrieval
opcode, and a maximum number of bytes per retrieval indi-
cator.

A user device 14 outputs the limited data request 722 to the
DST processing unit 16 to retrieve at least a portion of data
728. The DST client module 34 determines a number of data
segments associated with the data 728 to retrieve from the
DSTN module 22 in a first retrieval sequence. The determin-
ing may be based on one or more of a pre-fetch profile asso-
ciated with the user device (e.g., a historical record indicating
an average portion size for retrieval), a communication
latency level associated with the DSTN module 22, a com-
munication bandwidth level associated with the DSTN mod-
ule 22, a DST processing unit resource availability level, a

5

10

15

20

25

30

35

40

45

50

55

60

65

72

communication latency level to the user device 14, and a
communication bandwidth level associated with the user
device 14. The DST client module 34 generates data slice
request sets 724 corresponding to the number of data seg-
ments for retrieval. For each data segment, the generating
includes generating a set of read slice requests and outputting
the set of read slice requests to the DSTN module 22. The
DST client module 34 receives a set of data slices 726 for each
data segment of the number of data segments for retrieval. For
each received set of data slices 726, the DST client module 34
decodes the set of data slices 726 utilizing a dispersed storage
error coding function to produce the data segment.

The DST client module 34 stores each decoded data seg-
ment of the number of data segments for retrieval in the
pre-fetch segment memory 720. The DST client module 34
facilitates sending one or more data segments of the number
of data segments for retrieval to the user device 14 as the
portion of the data 728. For example, the DST client module
34 retrieves a first data segment from the pre-fetch segment
memory 720 and outputs the first data segment as the portion
of the data 728 to the user device 14.

The DST client module 34 suspends the sending to the user
device 14 when receiving a stop sending request from the user
device 14. When no stop sending request is received from the
user device 14 and each data segment of the plurality of data
segments of the data has not been retrieved from the DSTN
module 22, the DST client module 34 initiates another
retrieval sequence beginning with determining a second num-
ber of data segments associated with the data 728 to retrieve
from the DSTN module 22 in the second retrieval sequence.
Alternatively, the DST client module 34 initiates the other
retrieval sequence when receiving a next limited data request
722 from the user device 14. The process may continue until
each data segment of the plurality of data segments has been
retrieved and sent to the user device 14. A method of operation
of'the system is described in greater detail preference to FIG.
49B.

FIG. 49B is a flowchart illustrating another example of
retrieving data. The method begins at step 730 where a pro-
cessing module (e.g., of a distributed storage and task (DST)
client module) receives a limited data request from a request-
ing entity (e.g., a user device). The method continues at step
732 where the processing module determines a pre-fetch
number of data segments for retrieval. The determining may
include identifying a data segment to start with based on a last
retrieved data segment identifier. For example, the processing
module identifies an 11th data segment for retrieval when a
last retrieved data segment was data segment 10 of a previous
pre-fetch number of data segments retrieved that includes
data segments 1-10.

The method continues at step 734 where the processing
module facilitates retrieval of the pre-fetch number of data
segments from a distributed storage and task network
(DSTN) module. For each data segment, the facilitating
includes generating a set of read slice requests, outputting the
set of read slice request to the DSTN module, receiving a set
of slices, and decoding the set of slices utilizing a dispersed
storage error coding function to reproduce the data segment.
While retrieving the pre-fetch number of data segments from
the DSTN module, the processing module may suspend
retrieving the data segments when receiving a request to stop
retrieving from the requesting entity.

The method continues at step 736 where the processing
module temporarily stores the pre-fetch number of data seg-
ments in a pre-fetch segment memory. The method continues
at step 738 where the processing module outputs the pre-fetch
number of data segments to the requesting entity. The pro-

US 9,154,298 B2

73

cessing module may output the pre-fetch number of data
segments to the requesting entity at a transmission rate com-
patible with connectivity to the requesting entity. The output-
ting includes retrieving the pre-fetch number of data seg-
ments from the pre-fetch segment memory and sending the
pre-fetch number of data segments to the requesting entity.
Alternatively, the processing module suspends outputting the
pre-fetch number of data segments to the requesting entity
when receiving the request to stop retrieving from the
requesting entity.

FIG. 50A is a schematic block diagram of another embodi-
ment of a distributed computing system that includes a dis-
tributed storage and task (DST) processing unit 16 and a DST
execution unit 36. The DST processing unit 16 includes a
DST client module 34 and a plurality of interfaces 32. The
DST execution in 36 includes another plurality of interfaces
32 associated with the plurality of interfaces 32 of the DST
processing unit 16, a DST client module 34, and a slice
memory 88. The other plurality of interfaces 32 enables com-
munication of slices 742 between the DST processing unit 16
and the DST execution unit 36 via a plurality of communica-
tion paths and/or communication networks. For example, a
wireless network may be utilized to provide connectivity
between a first interface 32 ofthe DST processing and 16 and
an associated first interface 32 of the DST execution unit 36.
As another example, a wireline router network may be uti-
lized to provide connectivity between a second interface 32 of
the DST processing and 16 and an associated second interface
32 of the DST execution unit 36.

Each communication path of the plurality of communica-
tion paths may be associated with a performance level of a
plurality of performance levels (e.g., latency, jitter, error rate,
bandwidth, etc.). One or more of the DST client modules 34
establishes two or more communication paths between the
DST processing unit 16 and the DST execution unit 36. The
one or more of the DST client modules 34 obtains perfor-
mance information with regards to each of the two or more
communication paths. When communication of a first slice
742 is required between the DST processing unit 16 in the
DST execution unit 36, the one or more DST client modules
34 selects at least one connection of the two or more connec-
tions to support communication of the first slice 742 based on
the performance information. The one or more DST client
modules 34 facilitates utilization of the at least one connec-
tion to support communication of the first slice 742. A method
of operation of the system is described in greater detail with
reference to FIG. 50B.

FIG. 50B is a flowchart illustrating an example of estab-
lishing communications. The method begins at step 744
where a processing module (e.g., of a distributed storage and
task (DST) client module) establishes two or more connec-
tions to a DST execution unit. The establishing includes iden-
tifying one or more of potential access interfaces, one or more
networks, and invoking the two or more connections utilizing
the identified access interfaces and the one or more networks.
The method continues at step 746 where the processing mod-
ule obtains performance information with regards to each of
the two or more connections. The obtaining includes one or
more of initiating a query, performing a task, accessing a
historical performance record, receiving the performance
information, and retrieving the performance information.

The method continues at step 748 where the processing
module determines to access the DST execution unit. The
determining may be based on one or more of receiving an
access request, detecting and access condition, determining
to rebuild a slice, and generating an access request. The
method continues at step 750 where the processing module

10

20

25

30

35

40

45

55

74

selects at least one connection of the two or more connections
to support accessing the DST execution unit. The selecting
may be based on one or more of an access type, the perfor-
mance information, and an access performance requirement.
For example, the processing module selects a fourth connec-
tion associated with higher than average latency to write
slices. As another example, the processing module selects a
seventh connection associated with lower than average
latency to read slices and list slices. The method continues at
step 752 where the processing module facilitates utilization
of the at least one connection to access the DST execution
unit. The facilitating includes sending one or more access
messages associated with accessing the DST execution unit
via the at least one connection.

FIG. 51A is a diagram illustrating an example of ingesting
a large data file 760 into a dispersed storage network (DSN).
The example includes the large data file 760, the network 24,
and the distributed storage and/or task network (DSTN) mod-
ule 22 of FIG. 1. The DSTN module 22 includes a plurality of
storage units which may be the DST execution units 36 of
FIG. 1. In an ingesting example, the large data file 760 is
received over time for storage in the DSN. The initial dis-
persed storage error encoding parameters are determined for
storing the large data file 760. The initial dispersed storage
error encoding parameters indicate an error coding number
and a decode threshold number. The error coding number
indicates a number of encoded data slices that results when a
data segment 762 of the large data file 760 is encoded using a
dispersed storage error encoding function and the decode
threshold number indicates a minimum number of the
encoded data slices that are needed to recover the data seg-
ment 762.

Data segments 762 are generated (e.g., dividing, encoded)
for each of a series of n data portions during a corresponding
series of n time intervals. For example, data segments 762 are
generated for a first data portion during a first time interval,
more data segments 762 are generated for a second data
portion during a second time interval, etc. The time intervals
may be of a same or different durations. The time intervals
may be established based on at least one of a predetermina-
tion, a user input, a registry record lookup, and performance
of'the ingesting.

A first plurality of data segments 762 of a first portion of the
large data file 760 are encoded using the dispersed storage
error encoding function and during the first time interval of
receiving the large data file 760, using the initial dispersed
storage error encoding parameters to produce a first plurality
of'sets of encoded data slices 766. A write data request 764 is
sent to the DSTN module 22 to write, during the first time
interval, the first plurality of sets of encoded data slices 766 to
the storage units of the DSN. The processing of the writing the
first plurality of sets of encoded data slices 766 is monitored
to produce first write processing performance information
(e.g., based on how many of the slices 766 are successfully
written within desired time frames). When the first write
processing performance information compares unfavorably
to a desired write performance range (e.g., a predetermined
range), for the second time interval of receiving the large data
file 760, at least one of the error coding number and the
decode threshold number is adjusted to produce adjusted
dispersed storage error encoding parameters. As a specific
example, the error coding number may be raised to improve
reliability performance.

With the data segment 762 of the first data portion stored in
the DSTN module 22, a second plurality of data segments 762
of the second portion of the large data file 760 are encoded
during the second time interval using the dispersed storage

US 9,154,298 B2

75

error encoding function and using the adjusted dispersed
storage error encoding parameters to produce a second plu-
rality of sets of encoded data slices 766. Another right data
request 764 sent to the DSTN module 22 to write, during the
second time interval, the second plurality of sets of encoded
data slices 766 to the storage units of the DSN.

FIG. 51B is a diagram illustrating an example of encoding
adata segment 762 into a set of data blocks D1-Dn. The set of
datablocks provides a representation of the data segment 762.
For example, the data segment is divided into n equal portions
to form data blocks D1-Dn. As another example, the data
segment is divided into as many portions as required when a
fixed data portion sizes utilized.

FIG. 51C is a diagram illustrating an example of matrix
multiplication of an encoding matrix (E) and a data matrix (D)
to produce a coded matrix (C). In an example of a Reed
Solomon encoding function, the matrix multiplication is uti-
lized to encode a data segment to produce a set of data blocks
as a representation of the data segment. The Reed Solomon
encoding function is associated with an error coding number
and a decode threshold number. As a specific example, the
encoding matrix includes the error coding number 770 num-
ber of Y rows and the decode threshold number 768 number of
X columns. Accordingly, the encoding matrix includes Y
rows of X coefficients. The data segment is arranged into the
data matrix having X rows of Z number of data words. The
data matrix is matrix multiplied by the encoding matrix to
produce the coded matrix, which includes Y rows of Z num-
ber of encoded values.

The encoding function may utilize a variety of encoding
approaches to facilitate dispersed storage error encoding of
data. The encoding function includes, but not limited to, at
least one of the Reed Solomon encoding, an information
dispersal algorithm, on-line codes, forward error correction,
erasure codes, convolution encoding, Trellis encoding,
Golay, Multidimensional parity, Hamming, Bose Ray Chau-
duri Hocquenghem (BCH), and/or Cauchy-Reed-Solomon.

FIG. 51D is a diagram illustrating an example of matrix
multiplication of an encoding matrix (E) and a data matrix (D)
to produce a coded matrix (C) using initial dispersed storage
error encoding parameters. In an example of a dispersed
storage error encoding utilizing a Reed Solomon encoding
function, the matrix multiplication is utilized to encode a data
segment represented as the data matrix (D) using the encod-
ing matrix (E) to produce a set of data blocks of the coded
matrix (C) as a representation of the data segment. The Reed
Solomon encoding function is associated with the initial dis-
persed storage error encoding parameters that includes an
error coding number of five and a decode threshold number of
three.

As a specific example, the encoding matrix (E) includes
five rows of three coefficients (e.g., a-0). The data segment is
divided into data blocks which are arranged into the data
matrix (D) having 3 rows of 4 data blocks when the number of
data blocks is 12. The number of rows of the data matrix
matches the number of columns of the encoding matrix (e.g.,
the decode threshold number). The number of columns of the
data matrix increases as the number of data blocks of the data
segment increases. The data matrix is matrix multiplied by
the encoding matrix to produce the coded matrix, which
includes 5 rows of 4 encoded values (e.g., X11-X14, X21-
X24, X31-X34, X41-X44, and X51-X54). The number of
rows of the coded matrix matches the number of rows of the
encoding matrix (e.g., the error coding number). For instance,
X11=aD1+bD5+cD9; X12=aD2+bD6+cD10; X21=dD1+
eD5+D9; X23=dD3+eD7+fD11; X31=gD1+hD5+iD9;
X34=gD4+hD8+iD12; and X54=mD4+nD8+0D12.

10

15

20

25

30

35

40

45

50

55

60

65

76

FIG. 51E is a diagram illustrating an example of generating
a set of encoded data slices from a coded matrix (C). The
coded matrix illustrates the coded matrix (C) of FIG. 51D. A
number of rows of the coded matrix is equivalent to an error
coding number (e.g., which may also be referred to as width,
apillar width, n). A number of columns of the coded matrix is
equivalent to a number of columns of a data matrix and is
dependent on a number of data blocks of the data matrix (e.g.,
dependent on a size of a data segment that is utilized to form
the data matrix).

One or more coded values from each row of the coded
matrix are selected to form a corresponding encoded data
slice. Accordingly, an error coding number of encoded data
slices are produced from the coded matrix. For example,
coded values X11-X14 are selected to produce an encoded
data slice 1, coded values X21-X24 are selected to produce an
encoded data slice 2, coded values X31-X34 are selected to
produce an encoded data slice 3, coded values X41-X44 are
selected to produce an encoded data slice 4, and coded values
X51-X54 are selected to produce an encoded data slice 1.

The data matrix (e.g., the data segment) may be recovered
when any decode threshold number of encoded data slices are
available of the set of encoded data slices. A number of
combinations of the decode threshold number of encoded
data slices of the set of encoded data slices may be expressed
as error coding number choose the decode threshold number.
For example, the number of combinations is 10 which can be
expressed as 5 choose 3 when the error coding number is 5
and the decode threshold number 3. As a recovery example,
the data segment is recoverable when encoded data slices 1-3
are available. As another recovery example, the data segment
is recoverable when encoded data slices 3-5 are available. As
yet another recovery example, the data segment is recover-
able when encoded data slices 1, 3, and 5 are available.

Reliability of the recovery may be improved by adjusting
initial dispersed storage error encoding parameters to pro-
duce adjusted dispersed storage error encoding parameters to
encode a subsequent data segment. For example, the reliabil-
ity recovery may be improved when more encoded data slices
are available as compared to a number of encoded data slices
available utilizing the initial dispersed storage error encoding
parameters (e.g., a larger error coding number without chang-
ing the decode threshold number). As a specific example, the
number of combinations is 20 which can be expressed as 6
choose 3 when the error coding number is increased to 6 from
5 and the decode threshold remains at 3. As such, twice as
many encoded data slices may be available for utilization of a
decode threshold number of encoded data slices to recover the
subsequent data segment.

FIG. 51F is a diagram illustrating an example of matrix
multiplication of an encoding matrix and a data matrix to
produce a coded matrix using adjusted dispersed storage error
encoding parameters. In an example of adjusting the initial
dispersed storage error encoding parameters to produce
adjusted dispersed storage error encoding parameters, a
decode threshold number is maintained at 3 and an error
coding number is increased to 6 from 5. For instance, the
encoding matrix of the example of FIG. 51D is associated
with the initial dispersed storage error encoding parameters
and is modified in accordance with the adjusted dispersed
storage error encoding parameters, where the encoding
matrix (E) now includes an additional sixth row of 3 values
(e.g., p, q, r). The encoding matrix (F) is matrix multiplied by
the data matrix (D) to produce the coded matrix (C). The
coded matrix includes the coded matrix of FIG. 51D (e.g.,
associated with the initial dispersed storage error encoding
parameters) and an additional row of coded values X61-X64.

US 9,154,298 B2

77

When coded values of the coded matrix have been stored as
a set of encoded data slices, the matrix multiplication may be
a simplified by matrix multiplying only the additional sixth
row of the encoding matrix by the data matrix to produce the
sixth row (e.g., additional row) of the coded matrix. For
example, X61=pD1+qD5+rD9, X62=pD2+qD6+rD10,
X63=pD3+qD7+rD11, and X64=pD4+qD8+rD12. FEach
additional row of the coded matrix may be utilized to form a
corresponding additional encoded data slice. For example,
coded values X61-X64 forms a sixth encoded data slice of the
set of encoded data slices.

FIG. 51G is a timing diagram illustrating an example of
adjusting dispersed storage error encoding parameters based
on write processing performance information. The timing
diagram tracks time 772 from right to left as time increases.
Time traverses a plurality of time intervals (e.g., 1st time
interval, 2nd time interval, etc.). The timing diagram illus-
trates a desired write performance range 774, write process-
ing performance 776, and adjusted dispersed storage (DS)
error encoding parameters 780 on a vertical scale. Write
performance is associated with processing of writing a large
data file to a dispersed storage network (DSN) using a dis-
persed storage error encoding parameters. The desired write
performance range 774 represents a range from high to low of
acceptable write processing performance 776. The write pro-
cessing performance 776 represents actual performance level
of the writing process utilizing the dispersed storage error
encoding parameters. When the write processing perfor-
mance 776 compares unfavorably to the desired write perfor-
mance range 774, the dispersed storage error encoding
parameters are adjusted to produce the adjusted DS error
encoding parameters 780.

In an example of adjusting the error encoding parameters,
at a beginning of the first time interval, a set of write requests
are sentto a set of storage units, where the set of write requests
includes a set of encoded data slices that were encoded using
the initial DS error encoding parameters 778 (e.g., error cod-
ing encode number of 5, decode threshold number of 3).
Write acknowledgments are received from at least some of
the storage units. The write acknowledgments are monitored
(e.g., number of acknowledgments, number of resending of
write requests, number of storage failures, etc.) to create first
write processing performance information. Alternatively, or
in addition to, storage performance history regarding the stor-
age units may be included in the first write processing per-
formance information.

With the first write processing performance information
created, the first write processing information is compared to
the desired write performance range 774 to determine
whether the comparison is unfavorable (e.g., unfavorable
when too few write acknowledgments, too many write
acknowledgments, write acknowledgment response time too
long, write acknowledgment response time too short, too
many write requests resends, etc.). For example, the write
processing performance 776 is above the desired write per-
formance range 774 near an end of the first time interval. The
initial DS error encoding parameters 778 are adjusted when
the comparison is unfavorable. For example, the error coding
number is decreased and the decode threshold number is
maintained when the unfavorable comparison indicates
increased storage performance (e.g., above the desired write
performance range 774). For instance, the decode threshold
number of 3 is maintained at 3 and the error coding encode
number of 5 is decreased to 4. Alternatively, or in addition to,
when the comparison is unfavorable, a beginning of the sec-
ond time interval may be established to correspond to when

20

25

40

45

78

the first write processing performance information compares
unfavorably to the desired write performance range 774.

The adjusting of the DS error encoding parameters contin-
ues from time interval time interval. For example, an unfa-
vorable comparison at the end of the second time interval
produces an adjustment where the error coding encode num-
ber is increased from 4 to 5 and the decode threshold number
of 3 is maintained when the comparison indicates decreased
storage performance. As another example, an unfavorable
comparison at the end of a third time interval produces an
adjustment where the error coding encode number is
increased from 5 to 6 and the decode threshold number of3 is
maintained when the comparison indicates further decreased
storage performance. As yet another example, an unfavorable
comparison at the end of a fourth time interval produces an
adjustment where the error coding encode number is
increased from 6 to 8 and the decode threshold number of3 is
increased to 4 when the comparison indicates still further
decreased storage performance. As a still further example, an
unfavorable comparison at the end of a fifth time interval
produces an adjustment where the error coding encode num-
ber is decreased from 8 to 5 and the decode threshold number
of 4 is decreased to 3 when the comparison indicates
increased storage performance.

FIG. 51H is a diagram illustrating an example of normal-
izing dispersed storage error encoding parameters that
includes a representation of a large data file as stored 782, a
series of changes, and a resulting normalized storage of the
large data file 784 based on applying the series of changes to
the large data file is stored. The large data file as stored 782
represents a result of the storing the large data file utilizing
adjusted dispersed storage error encoding parameters of FIG.
51G. For example, during a first time interval, a first data
portion was encoded using an error coding encode number of
5 and a decode threshold number of 3 to produce a first
plurality of sets of encoded data slices for storage in a dis-
persed storage network (DSN).

When the large data file is stored, a determination may be
made whether to normalize the dispersed storage error encod-
ing parameters associated with each of the data portions (e.g.,
each of the pluralities of sets of encoded data slices). The
determination may be based on one or more of analyzing
history of read performance, detection of expiration of a time
frame since the large data file was stored, and receiving a
request. For example, the dispersed storage error encoding
parameters are to be normalized when a one-week since stor-
age time frame has expired and the history of read perfor-
mance over a previous one-week time period indicates favor-
able read performance.

When the dispersed storage error encoding parameters are
to be normalized, the dispersed storage error encoding param-
eters associated with storage of a corresponding plurality of
sets of encoded data slices for each of the time intervals is
normalized to produce normalized dispersed storage error
encoding parameters. The normalized dispersed storage error
encoding parameters may be determined based on one or
more of a lookup, a request, receiving parameters, the history
of read performance, a data type of the large data file, an
owner of the large data file, and a data size of the large data
file. For example, the normalized dispersed storage error
encoding parameters are retrieved from registry information
associated with the large data file (e.g., a vault lookup). For
instance, an error coding number of 5 and a decode threshold
number of 3 are utilized for the normalized dispersed storage
error encoding parameters.

Having determined the normalized dispersed storage error
encoding parameters, the changes are selected and applied to

US 9,154,298 B2

79

the data portions which may result in, for each data portion,
no changes 786, adding a slice 788, removing a slice 790, and
re-encoding 792 all of the slices of each set of encoded data
slices. The no change 786 is selected and applied when the
dispersed storage error encoding parameters are substantially
the same as the normalized dispersed storage error encoding
parameters. The add a redundancy slice 788 is selected and
applied when the error coding number is increased. The
remove a redundancy slice 790 is selected and applied when
the error coding number is decreased. The re-encode 792 is
selected and applied when the decode threshold number
changes.

In an example of no change, encoded data slices and dis-
persed storage error encoding parameters associated with the
first time interval, a third time interval, and the sixth time
interval are not adjusted. As an example of add a redundancy
slice 788, for the second time interval, the decode threshold
number remains constant at 3 and the error coding number is
increased to 5 from 4. The dispersed storage error encoding
storage of the large data file is updated using the normalized
dispersed storage error encoding parameters which includes
the error coding number of 5 and the decode threshold num-
ber of 3. For instance, for each set of encoded data slices, a
data segment is recovered and encoded using a modified
encoding matrix (e.g., that includes an extra row) to produce
an extra row of a coded matrix that forms an additional
encoded data slice for storage in the DSN.

In an example of removing a redundancy slice 790, for the
fourth time interval, the decode threshold number remains
constant at 3 and the error coding number is decreased from 6
to 5. For instance, a sixth slice of a corresponding set of slices
is deleted from the DSN. As an example of re-encode 792, for
the fifth time interval, a data segment is recovered and re-
encoded using another modified encoding matrix (e.g., that
includes one less column and three fewer rows) to produce an
updated coded matrix that forms an updated set of encoded
data slices (e.g., 5 slices) for storage in the DSN.

FIG. 511 is a diagram illustrating an example of reading a
large data file from a dispersed storage network (DSN). The
example includes the large data file 760, the network 24, and
the distributed storage and/or task network (DSTN) module
22 of FIG. 51A. In an example of reading, a data portion of the
large data file 760 is read from the storage units (e.g., DST
execution units 36) after the large data file 760 is stored as
multiple pluralities of sets of encoded data slices. At least two
of the pluralities of sets of encoded data slices were encoded
using different dispersed storage error encoding parameters.
As a specific example, for a data segment 762 of a first data
portion, a set of read slice requests are sent to a set of storage
units and slices 766 are provided as read data 794. Next, the
set of slices 766 are dispersed storage error decoded using
associated dispersed storage error encoding parameters to
reproduce the data segment 762.

The reading of the encoded data slices is monitored to
produce read processing performance information (e.g.,
number of storage units sending a read response, read
response time, number of resends of a read request, a read
response indicating a storage failure). When the read process-
ing performance information compares unfavorably to a
desired read performance range (e.g., a predetermined range),
a determination is made to adjust the dispersed storage error
encoding parameters for the set of encoded data slices. When
the dispersed storage error encoding parameters for the set of
encoded data slices are to be adjusted, the dispersed storage
error encoding parameters are adjusted for the set of encoded
data slices to produce read-based adjusted dispersed storage
error encoding parameters and storage of the set of encoded

10

15

20

25

30

35

40

45

50

55

60

65

80

data slices is updated in accordance with the read-based
adjusted dispersed storage error encoding parameters (e.g.,
no change, remove a redundancy slice, add a redundancy
slice, re-encode).

FIGS. 51J-K are timing diagrams illustrating examples of
adjusting dispersed storage error encoding parameters based
onread processing performance information. The timing dia-
grams illustrates time 772 increasing to the right as a one or
more reads 796 are performed to recover portions of a large
datafile. FIG. 517J illustrates a plurality of read 796 while FIG.
51K illustrates one read 796. A vertical scale of the timing
diagram illustrates a desired read performance range 798 and
a read processing performance level 800.

Inan example of reading, in a read request, a read large data
file or portion thereot 796 is performed to read a portion of the
large data file. Read performance is monitored during the
reading when recovering a set of encoded data slices to pro-
duce the read processing performance 800. When the read
processing performance 800 compares unfavorably to the
desired read performance range 798 (e.g., increasing above
the range, decreasing below the range, increasing at too fast a
rate, decreasing at too fast a rate), dispersed storage error
encoding parameters associated with the set of encoded data
slices is adjusted to produce read-based adjusted dispersed
storage error encoding parameters. Storage of the set of
encoded data slices is updated in accordance with the read-
based adjusted dispersed storage error encoding parameters.

FIG. 517 illustrates a specific example of adjusting the
dispersed storage error encoding parameters, at an end of a
first read process, where a determination is made to not
change the dispersed storage error encoding parameters when
the read processing performance 800 compares favorably to
the desired read performance range 798. As another specific
example, of adjusting the dispersed storage error encoding
parameters, at an end of a second read process, a determina-
tion is made to adjust the dispersed storage error encoding
parameters when the read processing performance 800 com-
pares unfavorably to the desired read performance range 798
(e.g., the read processing performance 800 is decreasing at
too fast of a rate). As yet another specific example, of adjust-
ing the dispersed storage error encoding parameters, at an end
of a third read process, a determination is made to adjust the
dispersed storage error encoding parameters when the read
processing performance 800 compares unfavorably to the
desired read performance range 798 (e.g., the read processing
performance 800 is still decreasing at too fast of a rate).

FIG. 51K illustrates a specific example of adjusting the
dispersed storage error encoding parameters, at an end of a
single read process, a determination is made to adjust the
dispersed storage error encoding parameters when the read
processing performance 800 compares unfavorably to the
desired read performance range 798 (e.g., the read processing
performance 800 is decreasing at too fast of a rate and has
been below the desired read performance range 798 at least
twice during the single reprocess).

FIGS. 51L-M are diagrams illustrating examples of chang-
ing dispersed storage error encoding parameters where that
includes a representation of storage of a large data file, a series
of changes, and resulting storage of the large data file. FIG.
51L illustrates an example where representation of storage of
the large data file is a normalized storage of the large data file
784, the series of changes, and a resulting change encoding of
large data file 802. The series of changes includes one or more
of no change 786, remove a redundancy slice 790, add a
redundancy slice 788, and re-encode 792 a set of encoded data
slices. The normalized storage of the large data file 784 rep-
resents a result of normalizing a previously stored large data

US 9,154,298 B2

81

file to utilize normalize dispersed storage error encoding
parameters as illustrated in FIG. 51H.

When the large data file is stored as the normalized storage
of large data file 784, a determination may be made whether
to change the dispersed storage error encoding parameters
associated with each data portion (e.g., each of a plurality of
sets of encoded data slices). The determination may be based
on one or more of analyzing history of read performance,
detection of expiration of a time frame since the large data file
was stored, and receiving a request. For example, the large
data file is read, read processing is monitored to produce read
processing performance, and the determination is made to
change the dispersed storage error encoding parameters
based on the read processing performance.

When the dispersed storage error encoding parameters are
to be changed, the dispersed storage error encoding param-
eters associated with storage of a corresponding plurality of
sets of encoded data slices for each of the time intervals is
changed to produce changed dispersed storage error encoding
parameters. The changed dispersed storage error encoding
parameters may be determined data portion by data portion
for each time interval, based on one or more of a lookup, a
request, receiving parameters, the history of read perfor-
mance, the read processing performance, a data type of the
large data file, an owner of the large data file, and a data size
of the large data file. For example, the changed dispersed
storage error encoding parameters are determined for a sec-
ond data portion based on the read processing performance of
the second data portion. For instance, an error coding number
is changed from 5 to 4 and a decode threshold number of 3 is
left unchanged when the change is to remove a redundancy
slice 790.

Having determined the changed dispersed storage error
encoding parameters, the changes are selected and applied to
the data portions which may result in, for each data portion,
the no changes 786, the adding a slice 788, the removing a
slice 790, and the re-encoding 792 all of the slices of each set
of'encoded data slices. In an example of no change, encoded
data slices and dispersed storage error encoding parameters
associated with a first time interval, a third time interval, and
a sixth time interval are not changed. As an example of add a
redundancy slice 788, for a fourth time interval, the decode
threshold number remains constant at 3 and the error coding
number is increased from 5 from 6. The dispersed storage
error encoding storage of the large data file is updated using
the changed dispersed storage error encoding parameters
which includes the error coding number of 6 and the decode
threshold number of 3. For instance, for each set of encoded
data slices, a data segment is recovered and encoded using a
modified encoding matrix (e.g., that includes an extra row) to
produce an extra row of a coded matrix that forms an addi-
tional encoded data slice for storage in a DSN.

In an example of removing a redundancy slice 790, for the
second time interval, the decode threshold number remains
constant at 3 and the error coding number is decreased from 5
to 4. For instance, a fifth slice of a corresponding set of slices
is deleted from the DSN. As an example of re-encode 792, for
a fifth time interval, a data segment is recovered and re-
encoded using another modified encoding matrix (e.g., that
includes one more column and three more rows) to produce
an updated coded matrix that forms an updated set of encoded
data slices (e.g., 8 slices) for storage in the DSN.

FIG. 51M illustrates an example where representation of
storage of the large data file is a large data file is stored 782,
the series of changes, and a resulting change encoding of large
data file 804. The series of changes includes one or more of no
change 786, remove a redundancy slice 790, add a redun-

20

40

45

55

82

dancy slice 788, and re-encode 792 a set of encoded data
slices. The large data file is stored 782 represents a result of
initial storage of the large data file as illustrated in FIG. 51H.

When the large data file is stored as the large data file is
stored 782, a determination may be made whether to change
the dispersed storage error encoding parameters associated
with each data portion (e.g., each of a plurality of sets of
encoded data slices). The determination may be based on one
or more of analyzing history of read performance, detection
of expiration of a time frame since the large data file was
stored, and receiving a request. For example, the large data
file is read, read processing is monitored to produce read
processing performance, and the determination is made to
change the dispersed storage error encoding parameters
based on the read processing performance.

When the dispersed storage error encoding parameters are
to be changed, the dispersed storage error encoding param-
eters associated with storage of a corresponding plurality of
sets of encoded data slices for each of the time intervals is
changed to produce changed dispersed storage error encoding
parameters. The changed dispersed storage error encoding
parameters may be determined data portion by data portion
for each time interval, based on one or more of a lookup, a
request, receiving parameters, the history of read perfor-
mance, the read processing performance, a data type of the
large data file, an owner of the large data file, and a data size
of the large data file. For example, the changed dispersed
storage error encoding parameters are determined for a sec-
ond data portion based on the read processing performance of
the second data portion. For instance, an error coding number
is changed from 4 to 5 and a decode threshold number of 3 is
left unchanged when the change is to add a redundancy slice
788.

Having determined the changed dispersed storage error
encoding parameters, the changes are selected and applied to
the data portions which may result in, for each data portion,
the no changes 786, the adding a slice 788, the removing a
slice 790, and the re-encoding 792 all of the slices of each set
of'encoded data slices. In an example of no change, encoded
data slices and dispersed storage error encoding parameters
associated with a third time interval and a fifth time interval
are not changed. As an example of add a redundancy slice
788, for the second time interval, the decode threshold num-
ber remains constant at 3 and the error coding number is
increased from 4 from 5. The dispersed storage error encod-
ing storage of the large data file is updated using the changed
dispersed storage error encoding parameters which includes
the error coding number of 5 and the decode threshold num-
ber of 3. For instance, for each set of encoded data slices, a
data segment is recovered and encoded using a modified
encoding matrix (e.g., that includes an extra row) to produce
an extra row of a coded matrix that forms an additional
encoded data slice for storage in a DSN. In an example of
re-encode 792, for a fourth time interval, a data segment is
recovered and re-encoded using another modified encoding
matrix (e.g., that includes one more column and two more
rows) to produce an updated coded matrix that forms an
updated set of encoded data slices (e.g., 8 slices) for storage in
the DSN.

FIG. 51N is a schematic block diagram of another embodi-
ment of a dispersed storage network (DSN) system that
includes a computing device 810 and a DSN 812. The com-
puting device 810 may be the distributed storage and task
(DST) processing unit 16 of FIG. 1. The DSN 812 may be the
DSTN module 22 of FIG. 1. The DSN 812 includes a plurality
of storage units 814. The storage unit 814 may be the DST
execution unit 36 of FIG. 1. The computing device 810

US 9,154,298 B2

83

includes a dispersed storage (DS) module 816. The DS mod-
ule 816 may be the DST client module 34 of FIG. 1. The DS
module 816 includes the outbound DST processing 80 and
the inbound DST processing 82 of FIG. 3. The outbound DST
processing 80 includes an ingesting module 818, a storing
module 820, and an adjusting module 822. The inbound DST
processing 82 includes a reading module 824.

In an example of ingesting a large data file 826, the ingest-
ing module 818 receives, over time, the large data file 826 for
storage in the DSN 812 and determines initial dispersed stor-
age error encoding parameters 828 for storing the large data
file 826. The initial dispersed storage error encoding param-
eters 828 indicate an error coding number and a decode
threshold number. The error coding number indicates a num-
ber of encoded data slices that results when a data segment of
the large data file 826 is encoded using a dispersed storage
error encoding function and the decode threshold number
indicates a minimum number of the encoded data slices that
are needed to recover the data segment. As a specific example,
the ingesting module 818 determines the initial dispersed
storage error encoding parameters 828 based on obtaining a
default error coding number and a default decode threshold
number (e.g., retrieved, received). As another specific
example, the ingesting module 818 determines the initial
dispersed storage error encoding parameters 828 based on a
historical record that includes an average error coding num-
ber and an average decode threshold number.

In an example of storing the ingested large data file 826, the
storing module 820 encodes, using the dispersed storage error
encoding function and during a first time interval of receiving
the large data file 826, a first plurality of data segments of a
first portion of the large data file 826 using the initial dis-
persed storage error encoding parameters to produce a first
plurality of sets of encoded data slices. As a specific example,
the storing module 820 segments the large data file 826 as the
large data file 826 is received to produce the first plurality of
data segments. The story module 820 encodes each data seg-
ment using the initial dispersed storage error encoding
parameters to produce a corresponding set of encoded data
slices. Having encoded the first plurality of data segments, the
storing module 820 writes, during the first time interval, the
first plurality of sets of encoded data slices to storage units
814 of the DSN 812. For example, the storing module 820, for
each group of a plurality of groups of encoded data slices of
the first plurality of sets of encoded data slices, generates a set
of'write requests 830, sends the set of write requests 830 to the
storage units 814, and receives write acknowledgements 832
from at least some of the storage units 814. A group of the
plurality of groups of encoded data slices includes one or
more sets of encoded data slices of the first plurality of sets of
encoded data slices.

In an example of adjusting the initial dispersed storage
error encoding parameters 828, the adjusting module 822
monitors processing of the writing the first plurality of sets of
encoded data slices to produce first write processing perfor-
mance information. As a specific example, the adjusting mod-
ule 822 monitors the write acknowledgements 832 to deter-
mine one or more of: a number of storage units sending a
write acknowledgment, response time for the at last some of
the storage units sending the write acknowledgements,
resending of a write request to one or more storage units, a
write acknowledgement indicating a storage failure, and stor-
age performance information embedded in the write
acknowledgement. Next, the adjusting module 822 interprets
the monitoring to create the first write processing perfor-
mance information. Alternatively, or in addition to, the
adjusting module 822 may obtain storage performance his-

10

20

25

30

35

40

45

50

55

60

65

84

tory data regarding the storage units 814 and include the
storage performance history data in the first write processing
performance information.

Having produced the first write processing performance
information, the adjusting module 822 determines whether
the first write processing performance information compares
unfavorably to a desired write performance range by one or
more of a variety of approaches. For example, when a number
of' storage units acknowledging storage of encoded data slices
of at least some of the first plurality of sets of encoded data
slices is at or below a minimum desired storage response
number. In another example, when the number of storage
units acknowledging storage of encoded data slices of at least
some of the first plurality of sets of encoded data slices is at or
above a maximum desired storage response number. As
another example, when response time for at least some of the
storage units acknowledging storage of the at least some of
the first plurality of sets of encoded data slices is at or below
a minimum desired response time. As yet another example,
when the response time for the at least some of the storage
units acknowledging storage of the at least some of the first
plurality of sets of encoded data slices is at or above a maxi-
mum desired response time.

In yet another example of determining whether the first
write processing performance information compares unfa-
vorably to the desired write performance range, when at least
an acceptable maximum resend tolerance number of resend
write requests is received from one or more of the storage
units. In yet a still further example, when less than a minimum
resend tolerance number of resend write requests is received
from the storage units. As yet a further example, when at least
an acceptable maximum failure tolerance number of storage
failure messages is received from the one or more of the
storage units. As yet a still further example, when less than a
minimum failure tolerance number of storage failure mes-
sages is received from the storage units. Another example
includes, when write response messages from the one or more
of'the storage units includes storage performance information
indicative of at least one of declined storage performance and
declined storage reliability. Another further example
includes, when the write response messages from the one or
more of the storage units includes storage performance infor-
mation indicative of at least one of increased storage perfor-
mance and increased storage reliability.

When the first write processing performance information
compares unfavorably to the desired write performance
range, the adjusting module 822 adjusts, for a second time
interval of receiving the large data file 826, at least one of the
error coding number and the decode threshold number to
produce adjusted dispersed storage error encoding param-
eters 834. For example, the adjusting module 822 increases
the error coding number and maintains the decode threshold
number when the unfavorable comparison of the first write
processing performance information with the desired write
performance range indicates a declined storage performance.
As another example, the adjusting module 822 decreases the
error coding number and maintains the decode threshold
number when the unfavorable comparison of the first write
processing performance information with the desired write
performance range indicates an increased storage perfor-
mance. As yet another example, the adjusting module 822
increases the error coding number and increases the decode
threshold number when the unfavorable comparison of the
first write processing performance information with the
desired write performance range indicates a declined storage
reliability. Alternatively, or in addition to, the adjusting mod-
ule 822 establishes a beginning of the second time interval to

US 9,154,298 B2

85

correspond to when the first write processing performance
information compares unfavorably to the desired write per-
formance range.

With adjusted dispersed storage error encoding parameters
834, the storing module 820 encodes, using the dispersed
storage error encoding function and during the second time
interval, a second plurality of data segments of a second
portion of the large data file 826 using the adjusted dispersed
storage error encoding parameters 834 to produce a second
plurality of sets of encoded data slices. The storing module
820 writes, during the second time interval, the second plu-
rality of sets of encoded data slices to the storage units of the
DSN (e.g., sending write requests 830 that includes the sec-
ond plurality of sets of encoded data slices).

With the writing of the second plurality of sets of encoded
data slices, the adjusting module 822 monitors processing of
the writing the second plurality of sets of encoded data slices
to produce second write processing performance information
(e.g., by monitoring write acknowledgments 832 associated
with the processing of the writing). When the second write
processing performance information compares unfavorably
to the desired write performance range, the adjusting module
822 adjusts, for a third time interval of receiving the large data
file 826, the adjusted dispersed storage error encoding param-
eters 834 to produce readjusted dispersed storage error
encoding parameters.

The storing of the large data file 826 and adjusting of the
dispersed storage error encoding parameters continues to pro-
cess all portions of the large data file 826. When the large data
file 826 is stored, the adjusting module 822 determine
whether to normalize the first dispersed storage error encod-
ing parameters 828 and the adjusted dispersed storage error
encoding parameters 834 (e.g., and perhaps others including
the readjusted dispersed storage error encoding parameters).
The determining may be based on one or more of a predeter-
mination, a time period since storage has completed, a DSN
performance indicator, a data storage reliability indicator,
monitoring of reading of the large data file 826, a request, and
the first and adjusted dispersed storage error encoding param-
eters. For example, the adjusting module 822 determines to
normalize all dispersed storage error encoding parameters
when the large data file 826 has been stored for one week and
the data storage reliability indicator indicates that a reliability
level is greater than a minimum reliability threshold level.

When the first and adjusted dispersed storage error encod-
ing parameters are to be normalized, the adjusting module
822 normalizes the first and adjusted dispersed storage error
encoding parameters to produce normalized dispersed stor-
age error encoding parameters. Having normalized the dis-
persed storage error encoding parameters, the adjusting mod-
ule 822 updates dispersed storage error encoding storage of
the large data file 826 in accordance with the normalized
dispersed storage error encoding parameters. For example,
when a data segment was encoded with a decode threshold
number that is substantially the same as a decode threshold
number of the normalized dispersed storage error encoding
parameters and the data segment was also encoded with an
error coding number that is greater than an error coding
number of the normalized dispersed storage error coding
parameters, the adjusting module 822 removes one or more
redundancy slices such that a remaining number of encoded
data slices of the data segment is substantially the same as the
error coding number of the normalized dispersed storage
error coding parameters. For instance, the adjusting module
822 issues a store slice request 836 that includes an indicator
to delete a redundancy slice to the storage unit 814.

10

15

20

25

30

35

40

45

50

55

60

65

86

As another example of updating storage of the large data
file 826 in accordance with the normalized dispersed storage
error encoding parameters, when the data segment was
encoded with the decode threshold number that is substan-
tially the same as the decode threshold number of the normal-
ized dispersed storage error encoding parameters and the data
segment was also encoded with an error coding number that is
less than the error coding number of the normalized dispersed
storage error coding parameters, the adjusting module 822
adds one or more redundancy slices such that the remaining
number of encoded data slices of the data segment is substan-
tially the same as the error coding number of the normalized
dispersed storage error coding parameters. For instance, the
adjusting module 822 recovers at least a decode threshold
number of slices 836 of the data segment from the storage
units 814, decodes the slices 836 to reproduce the data seg-
ment, encodes the data segment to produce a redundancy
slice, and issues a store slice request 836 that includes the
redundancy slice to the storage units 814.

As another example of updating storage of the large data
file 826 in accordance with the normalized dispersed storage
error encoding parameters, when the data segment was
encoded with another decode threshold number that is not the
same as the decode threshold number of the normalized dis-
persed storage error encoding parameters, the adjusting mod-
ule 822 re-encodes the data segment using the normalized
dispersed storage error coding parameters. For instance, the
adjusting module 822 recovers at least the decode threshold
number of slices 836 of the data segment from the storage
units 814, decodes the slices 836 to reproduce the data seg-
ment (e.g., using old parameters), encodes the data segment
using the normalized dispersed storage error coding param-
eters to produce a new set of encoded data slices, and issues
store slice requests 836 to the set of storage unit 814 that
includes the new set of encoded data slices.

In an example of adjusting the dispersed storage error
encoding parameters based on read processing performance
information, the reading module 824, after the large data file
826 is stored as multiple pluralities of sets of encoded data
slices, where at least two of the pluralities of sets of encoded
data slices were encoded using different dispersed storage
error encoding parameters, reads at least a portion 840 of the
large data file from the storage units 814. For example, the
reading module 824 issues read requests and receives read
responses 838 from the storage units 814, where the read
responses 838 includes sets of encoded data slices, and
decodes the sets of encoded data slices to produce the at least
the portion 840 of the large data file.

While reading, the read module 824 monitors read perfor-
mance of the reading of at least some of the multiple plurali-
ties of sets of encoded data slices to produce read processing
performance information. For example, the read module 824
monitors the read responses 838 to determine one or more of:
a number of storage units sending a read response, read
response time for the at last some of the storage units sending
the read responses, resending of a read request to one or more
storage units, a read response indicating a storage failure, and
read performance information embedded in the read
response. Next, the read module 824 interprets the monitor-
ing to create the read processing performance information.

When the read processing performance information com-
pares unfavorably to a desired read performance range, the
read module 824 determines whether to adjust the dispersed
storage error encoding parameters for at least one of the
multiple pluralities of sets of encoded data slices. When the
dispersed storage error encoding parameters for the at least
one of the multiple pluralities of sets of encoded data slices

US 9,154,298 B2

87

are to be adjusted, the reading module 824 adjusts the dis-
persed storage error encoding parameters for the at least one
of the multiple pluralities of sets of encoded data slices to
produce read-based adjusted dispersed storage error encod-
ing parameters and updates storage of the at least one of the
multiple pluralities of sets of encoded data slices in accor-
dance with the read-based adjusted dispersed storage error
encoding parameters.

As an example of updating storage, the reading module
824, when the read-based adjusted dispersed storage error
encoding parameters includes a decreased error coding num-
ber, deletes one or more redundancy encoded data slices from
each set of encoded data slices of the at least one of the
multiple pluralities of sets of encoded data slices. For
instance, the reading module 824 issues update requests 842
to the storage units 814 to delete the one or more redundancy
encoded data slices. As another example of updating storage,
the reading module 824, when the read-based adjusted dis-
persed storage error encoding parameters includes an
increased error coding number, creates, in accordance with
the dispersed storage error encoding function, one or more
new redundancy encoded data slices for each set of encoded
data slices of the at least one of the multiple pluralities of sets
of'encoded data slices. For instance, the reading module 824
recovers a decode threshold number of encoded data slices of
the set of encoded data slices, decodes the recovered slices to
reproduce a corresponding data segment, encodes the data
segment to produce a redundancy encoded data slice, and
issues an update request 842 that includes the redundancy
encoded data slice. As yet another example of updating stor-
age, the reading module 824, when the read-based adjusted
dispersed storage error encoding parameters includes a
changed error coding number and a changed decode thresh-
old number, re-encoding a plurality of data segments for each
of'the at least one of the multiple pluralities of sets of encoded
data slices using the dispersed storage error encoding func-
tion in accordance with the read-based adjusted dispersed
storage error encoding parameters to produce a plurality of
sets of re-encoded data slices. For instance, the reading mod-
ule 824 recovers the decode threshold number of encoded
data slices of the set of encoded data slices, decodes the
recovered slices to reproduce the corresponding data seg-
ment, encodes the data segment to produce a new set of
encoded data slices, and issues update requests 842 that
includes the new set of encoded data slices.

FIG. 510 is a flowchart illustrating an example of adjusting
dispersed storage error encoding parameters. The method
begins at step 850 where a processing module receives, over
time, a large data file for storage in a dispersed storage net-
work (DSN). The method continues at step 852 where the
processing module determines initial dispersed storage error
encoding parameters for storing the large data file (e.g., deter-
mine, retrieve, receive). The initial dispersed storage error
encoding parameters indicate an error coding number and a
decode threshold number. The error coding number indicates
a number of encoded data slices that results when a data
segment of the large data file is encoded using a dispersed
storage error encoding function and the decode threshold
number indicates a minimum number of the encoded data
slices that are needed to recover the data segment. The
method continues at step 854 where the processing module
encodes, using the dispersed storage error encoding function
and during a first time interval of receiving the large data file,
a first plurality of data segments of a first portion of the large
data file using the initial dispersed storage error encoding
parameters to produce a first plurality of sets of encoded data
slices.

10

15

20

25

30

35

40

45

50

55

60

65

88

The method continues at step 856 where the processing
module writes, during the first time interval, the first plurality
of'sets of encoded data slices to storage units of the DSN. For
example, the processing module, for each group of a plurality
of groups of encoded data slices of the first plurality of sets of
encoded data slices generates a set of write requests, sends the
set of write requests to the storage units, and receives write
acknowledgements from at least some of the storage units. A
group of the plurality of groups of encoded data slices
includes one or more sets of encoded data slices of the first
plurality of sets of encoded data slices.

The method continues at step 858 where the processing
module monitors processing of the writing the first plurality
of'sets of encoded data slices to produce first write processing
performance information. For example, the processing mod-
ule monitors the write acknowledgements to determine one or
more of: a number of storage units sending a write acknowl-
edgment, response time for the at last some of the storage
units sending the write acknowledgements, resending of a
write request to one or more storage units, a write acknowl-
edgement indicating a storage failure, and storage perfor-
mance information embedded in the write acknowledgement.
Next, the processing module interprets the monitoring to
create the first write processing performance information.
Alternatively, or in addition to, the processing module obtains
storage performance history data regarding the storage units
and includes the storage performance history data in the first
write processing performance information.

The method continues at step 860 where the processing
module determines that the first write processing perfor-
mance information compares unfavorably to the desired write
performance range when detecting a condition. Examples of
conditions include when a number of storage units acknowl-
edging storage of encoded data slices of at least some of the
first plurality of sets of encoded data slices is at or below a
minimum desired storage response number; when the number
of' storage units acknowledging storage of encoded data slices
of at least some of the first plurality of sets of encoded data
slices is at or above a maximum desired storage response
number; and when response time for at least some of the
storage units acknowledging storage of the at least some of
the first plurality of sets of encoded data slices is at or below
a minimum desired response time. More examples of condi-
tions include when the response time for the at least some of
the storage units acknowledging storage of the at least some
of'the first plurality of sets of encoded data slices is at orabove
a maximum desired response time; when at least an accept-
able maximum resend tolerance number of resend write
requests is received from one or more of the storage units; and
when less than a minimum resend tolerance number of resend
write requests is received from the storage units. Still more
examples of conditions include when at least an acceptable
maximum failure tolerance number of storage failure mes-
sages is received from the one or more of the storage units;
when less than a minimum failure tolerance number of stor-
age failure messages is received from the storage units; when
write response messages from the one or more of the storage
units includes storage performance information indicative of
at least one of declined storage performance and declined
storage reliability; and when the write response messages
from the one or more of the storage units includes storage
performance information indicative of at least one of
increased storage performance and increased storage reliabil-
ity.

The method continues at step 862 when the first write
processing performance information compares unfavorably
to a desired write performance range, where the processing

US 9,154,298 B2

89

module adjusts, for a second time interval of receiving the
large data file, at least one of the error coding number and the
decode threshold number to produce adjusted dispersed stor-
age error encoding parameters. For example, the processing
module increases the error coding number and maintains the
decode threshold number when the unfavorable comparison
of'the first write processing performance information with the
desired write performance range indicates a declined storage
performance. As another example, the processing module
decreases the error coding number and maintains the decode
threshold number when the unfavorable comparison of the
first write processing performance information with the
desired write performance range indicates an increased stor-
age performance. As yet another example, the processing
module increases the error coding number and increases the
decode threshold number when the unfavorable comparison
of'the first write processing performance information with the
desired write performance range indicates a declined storage
reliability. Alternatively, or in addition to, the processing
module establishes a beginning of the second time interval to
correspond to when the first write processing performance
information compares unfavorably to the desired write per-
formance range.

The method continues at step 864 where the processing
module encodes, using the dispersed storage error encoding
function and during the second time interval, a second plu-
rality of data segments of a second portion of the large data
file using the adjusted dispersed storage error encoding
parameters to produce a second plurality of sets of encoded
data slices. The method continues at step 866 where the
processing module writes, during the second time interval,
the second plurality of sets of encoded data slices to the
storage units of the DSN. The method continues at step 868
where the processing module monitors processing of the writ-
ing of the second plurality of sets of encoded data slices to
produce second write processing performance information.
When the second write processing performance information
compares unfavorably to the desired write performance
range, the method continues at step 870 where the processing
module adjusts, for a third time interval of receiving the large
data file, the adjusted dispersed storage error encoding
parameters to produce readjusted dispersed storage error
encoding parameters.

When the large data file is stored, the method continues at
step 872 where the processing module determines whether to
normalize the first and adjusted dispersed storage error
encoding parameters (e.g., a time period since storage has
expired, a storage reliability indicator indicates favorable
storage, etc.). When the first and adjusted dispersed storage
error encoding parameters are to be normalized, the method
continues at step 874 where the processing module normal-
izes the first and adjusted dispersed storage error encoding
parameters to produce normalized dispersed storage error
encoding parameters (e.g., establishing default parameters).
The method continues at step 876 where the processing mod-
ule updates dispersed storage error encoding storage of the
large data file in accordance with the normalized dispersed
storage error encoding parameters (e.g., aligning storage of
sets of slices for each data segment in line with the normalized
dispersed storage error encoding parameters by at least one of
no change, adding the slice, deleting a slice, re-encoding the
entire set of slices).

After the large data file is stored as multiple pluralities of
sets of encoded data slices, wherein at least two of the plu-
ralities of sets of encoded data slices were encoded using
different dispersed storage error encoding parameters, the
method continues at step 878 where the processing module

10

15

20

25

30

35

40

45

50

55

60

65

90

reads at least a portion of the large data file from the storage
units. The method continues at step 880 where the processing
module monitors read performance of the reading of at least
some of the multiple pluralities of sets of encoded data slices
to produce read processing performance information. For
example, the processing module monitors read responses to
determine one or more of: a number of storage units sending
a read response, read response time for the at last some of the
storage units sending the read responses, resending of a read
request to one or more storage units, a read response indicat-
ing a storage failure, and read performance information
embedded in the read response. Next, the processing module
interprets the monitoring to create the read processing per-
formance information.

When the read processing performance information com-
pares unfavorably to a desired read performance range, the
method continues at step 882 where the processing module
determines whether to adjust the dispersed storage error
encoding parameters for at least one of the multiple pluralities
of sets of encoded data slices (e.g., identifying one of the
pluralities of sets of encoded data slices associated with the
unfavorable comparison and determining whether the com-
parison is greater than a performance variance threshold).
When the dispersed storage error encoding parameters for the
at least one of the multiple pluralities of sets of encoded data
slices are to be adjusted, the method continues at step 884
where the processing module adjusts the dispersed storage
error encoding parameters for the at least one of the multiple
pluralities of sets of encoded data slices to produce read-
based adjusted dispersed storage error encoding parameters.

The method continues at step 886 where the processing
module updates storage of the at least one of the multiple
pluralities of sets of encoded data slices in accordance with
the read-based adjusted dispersed storage error encoding
parameters. For example, when the read-based adjusted dis-
persed storage error encoding parameters includes a
decreased error coding number, the processing module
deletes one or more redundancy encoded data slices from
each set of encoded data slices of the at least one of the
multiple pluralities of sets of encoded data slices. As another
example, when the read-based adjusted dispersed storage
error encoding parameters include an increased error coding
number, the processing module creates, in accordance with
the dispersed storage error encoding function, one or more
new redundancy encoded data slices for each set of encoded
data slices of the at least one of the multiple pluralities of sets
of encoded data slices. As yet another example, when the
read-based adjusted dispersed storage error encoding param-
eters include a changed error coding number and a changed
decode threshold number, the processing module re-encodes
a plurality of data segments for each of the at least one of the
multiple pluralities of sets of encoded data slices using the
dispersed storage error encoding function in accordance with
the read-based adjusted dispersed storage error encoding
parameters to produce a plurality of sets of re-encoded data
slices.

FIG. 52A is a diagram illustrating an example of an initial
storage map structure 890 with regards to mapping distrib-
uted storage and task network (DSTN) address ranges to a
plurality of distributed storage and task (DST) execution units
implemented at a common site. The initial storage map struc-
ture 890 includes a site address range field 892 and a plurality
of DST execution unit address range 1-3 fields 884, 896, and
898. Each DST execution unit address range field corre-
sponds to a DST execution unit of the plurality of DST execu-
tion units. Each DST execution unit address range field
includes a DST execution unit address range entry indicating

US 9,154,298 B2

91

a DSTN address range associated with a corresponding DST
execution unit. The site address range field 892 includes a site
address range entry indicating an address range mapping for
the site. The site address range entry includes a range that
encompasses an aggregate of the DST execution unit address
range entries for the plurality of DST execution unit address
range fields 894-898. For example, a site is mapped to a site
address range of 1000-1999 which includes a DST execution
unit 1 address range 894 of 1000-1299, a DST execution unit
2 address range 896 of 1300-1599, and a DST execution unit
3 address range 898 of 1600-1999. Address range assign-
ments are contiguous across the plurality of DST execution
units 1-3.

From time to time, boundaries of address ranges between
two DST execution units of the plurality of DST execution
units may be modified. The modifying may be based on one
or more of an addition of more storage capacity, removal of
storage capacity, and uneven growth of storage capacity uti-
lization. For example, a boundary between DST execution
unit 1 and DST execution unit 2 is moved to map more
addresses to DST execution unit 1 and fewer addresses to
DST execution unit 2 when encoded data slices stored at DST
execution unit 2 utilize more storage capacity than encoded
data slices stored at DST execution unit 1. Slices may be
migrated from DST execution unit 2 to DST execution unit 1
in accordance with moving the boundary. A method to pro-
vide a confirmed modification of an address boundary
between at least two neighbor DST execution units is dis-
cussed in greater detail with reference to FIGS. 52B-C.

FIG. 52B is a diagram illustrating an example of a storage
map modification package structure 900 that includes a pre-
vious storage map 902 and an updated storage map 904. The
storage map modification package 900 is also associated with
afirst neighbor signature 906 and a second neighbor signature
908. The storage map modification package 900 and signa-
tures 906-908 may be utilized when updating address range
boundaries between two DST execution units. A plurality of
storage map modification packages and signature combina-
tions may be utilized to document a plurality of address range
boundary modifications.

The previous storage map 902 includes the site address
range field 892 and the plurality of DST execution unit
address range fields 894, 896, and 898 of FIG. 52 A. Entries of
the previous storage map 902 pertain to an initial state of
address range mapping for a site prior to moving an address
range boundary between two neighboring DST execution
units. For example, the previous storage map 902 includes
initial state address range mapping where a site address range
entry is 1000-1999, a DST execution unit 1 is mapped to an
address range of 1000-1299, a DST execution unit 2 is
mapped to an address range of 1300-1599, and a DST execu-
tion unit 3 is mapped to an address range of 1600-1999.

The updated storage map 904 includes address range
entries corresponding to an address range mapping after an
address boundary is modified between the two neighboring
DST execution units. The site address range entry of the site
address range field 892 of the updated storage map 904 is
modified when the boundary change relates to a boundary
between a DST execution unit of the associated site and
another DST execution unit of another site. The site address
range entry of the site address range field 892 of the updated
storage map 904 is not modified when the boundary change
relates to a boundary between two neighboring DST execu-
tion units of the site. For example, the site address range entry
of'the updated storage map 904 substantially matches the site
address range entry of the previous storage map 902 when the
boundary change relates to the boundary between two neigh-

20

35

40

45

50

55

92

boring DST execution units of the site. For instance, a site
address range entry of 1000-1999 is maintained from the
previous storage map to the updated storage map.

DST execution unit address range entries are modified in
the updated storage map 904 from the previous storage map
902 when an address boundary associated with neighboring
DST execution units is updated. For example, a previous
storage map address range mapping of 1000-1299 for DST
execution unit 1 is modified to an address range of 1000-1399
for the updated storage map and a previous storage map
address range mapping of 1300-1599 for DST execution unit
2 is modified to an address range of 1400-1599 for the
updated storage map when the address range boundary is
modified to map more addresses to DST execution unit 1 and
fewer addresses to DST execution unit 2.

The first neighbor signature field 906 includes a first neigh-
bor signature entry generated by a first neighboring DST
execution unit of a pair of neighboring DST execution units
associated with an address boundary modification when the
first neighboring DST execution unit approves the address
boundary modification and content of the storage map modi-
fication package. The second neighbor signature field 908
includes a second neighbor signature entry generated by a
second neighboring DST execution unit of the pair of neigh-
boring DST execution units associated with the address
boundary modification when the second neighboring DST
execution unit approves the address boundary modification
and content of the storage map modification package. A sig-
nature entry includes a signature generated over the storage
map modification package 900. The signature may be gener-
ated by any signature generation method including a digital
signature algorithm. For example, the first neighboring DST
execution unit performs a hashing function on the storage
map modification package 900 to produce a hash digest. Next,
first neighboring DST execution unit encrypts the hash digest
utilizing a private key of a public/private key pair associated
with the first neighboring DST execution unit to produce the
first neighbor signature 906.

The storage map modification package 900, the first neigh-
bor signature 906, and the second neighbor signature 908 may
be utilized by a validating entity to validate the address
boundary modification. The validating includes one or more
of verifying that the address boundary modification is with
regards to a pair of DST execution units associated with the
first neighbor signature in the second neighbor signature,
validating the first neighbor signature, and validating the
second neighbor signature. The signature validation includes
validating the signature utilizing a signature validation
approach. For example, the validating entity performs a hash-
ing function on the storage map modification package 900 to
produce a calculated hash digest. Next, the validating entity
decrypts the signature utilizing a public key associated with
an entity that produced the signature to produce a decrypted
signature. Next, the validating entity indicates that the signa-
ture is validated when the decrypted signature compares
favorably (e.g., substantially the same) to the calculated hash
digest. With the storage map modification package 900, the
first neighbor signature 906, and the second neighbor signa-
ture 908 validated by the validating entity, subsequent utili-
zation of the storage map modification package is authorized.
The utilization of the storage map modification package
includes one or more of migrating slices from a first DST
execution unit to a second DST execution unit and accessing
a DST execution unit in accordance with the updated storage
map. A method of generating the storage map modification
package 900 is discussed in greater detail with reference to
FIG. 52C.

US 9,154,298 B2

93

FIG. 52C is a flowchart illustrating an example of migrat-
ing slices. The method begins at step 910 where a processing
module (e.g., of a distributed storage and task (DST) client
module) obtains utilization information of a pair of adjacent
DST execution units of the common pillar (e.g., implemented
a common site). The utilization information includes one or
more of a storage capacity level, a storage utilization level,
and available storage level, and an assigned address range.
The pair of adjacent DST execution units includes a pair of
DST execution units assigned to adjacent address ranges.

The method continues at step 912 where the processing
module verifies utilization information of the pair of adjacent
DST execution units based on companion utilization infor-
mation. The verifying includes identifying companion DST
execution units associated with the companion utilization
information. The identifying includes at least one of retriev-
ing, receiving, initiating a query, and identifying from a dis-
tributed storage and task network (DSTN) addressed a physi-
cal location table lookup. For example, the processing
module identifies a set of DST execution units that includes
the pair of adjacent DST execution units. The processing
module identifies the companion DST execution units as
remaining DST execution units of the set of DST execution
units. The verifying further includes comparing storage uti-
lization levels of each DST execution unit of the companion
DST execution units to each other DST execution unit of the
set of DST execution units. The processing module indicates
verified utilization information when the utilization levels are
substantially the same. Alternatively, the processing module
may skip the preceding step.

When verified, the method continues at step 914 where the
processing module selects slices to migrate. The selecting
includes selecting a destination DST execution unit based on
associated available storage level and determining an amount
of slices based on available storage level of another DST
execution unit. The processing module may select slices at a
high-end of a slice range when the destination unit is assigned
higher addresses. The processing module may select slices
associated with DSTN addresses at a low-end of the slice
range when the destination unit is assigned to lower DSTN
addresses. The selection of the amount of slices includes at
least one of choosing a predetermined number, selecting the
amount based on a performance indicator, and selecting
amount to provide an updated level of storage that is less than
a high storage level threshold.

The method continues at step 916 where the processing
module facilitates migrating the slices to migrate. The facili-
tating includes at least one of retrieving the slices to migrate,
sending the slices to migrate to the destination DST execution
unit, and generating a request to migrate slices. The method
continues at step 918 where the processing module generates
an updated storage map based on the slices to migrate. The
generating includes determining slice names corresponding
to the slices to migrate which are disassociated with the DST
execution unit and which are now associated with the desti-
nation DST execution unit. The determining may be based on
one or more of a lookup, accessing the DSTN address to
physical location table lookup, and a query.

The method continues at step 920 where the processing
module generates a storage map modification package that
includes a previous storage map and the updated storage map.
The generating includes obtaining the previous storage map
by retrieving the previous storage map from a memory or
receiving the previous storage map. The generating includes
appending the previous storage map to the updated storage
map to produce the storage map modification package. The
method continues at step 922 where the processing module

10

15

20

25

30

35

40

45

50

55

60

65

94

facilitates attaching a signature from each DST execution unit
of'the pair of adjacent DST execution units to the storage map
modification package to produce a fully signed storage map
modification package. The facilitating includes obtaining the
signature from each DST execution unit of the pair of adja-
cent DST execution units. The obtaining includes at least one
of generating a signature over the storage map modification
package, attaching the signature to the storage the modifica-
tion package, sending a signature request that includes the
attached signature and storage map modification package to
another DST execution unit of the pair of adjacent DST
execution units, and receiving a fully signed storage map
modification package.

The method continues at step 924 where the processing
module publishes the fully signed storage map modification
package. The publishing includes at least one of receiving a
fully signed storage map modification package request, out-
putting the fully signed storage map modification package to
the other DST execution unit, outputting the fully signed
storage map modification package to one or more DST execu-
tion units of the set of DST execution units, and storing the
fully signed storage map modification package in a DSTN
module.

In addition, subsequent access to a slice may utilize the
fully signed storage map modification package. For example,
upon a slice access request, obtain an initial storage package,
obtain one or more fully signed storage map modification
packages, identify a storage location corresponding to the
slice based on the initial storage package and the one or more
fully signed storage map modification packages, validate the
most recent fully signed storage map modification package,
and when validated, access the slice utilizing the present
storage location.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “operably coupled to”, “coupled to”,
and/or “coupling” includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., an item includes, but is not limited to, a component,
an element, a circuit, and/or a module) where, for indirect
coupling, the intervening item does not modify the informa-
tion of a signal but may adjust its current level, voltage level,
and/or power level. As may further be used herein, inferred
coupling (i.e., where one element is coupled to another ele-
ment by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to”. As
may even further be used herein, the term “operable to” or
“operably coupled to” indicates that an item includes one or
more of power connections, input(s), output(s), etc., to per-
form, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may

US 9,154,298 B2

95

be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, and/or “processing unit” may be a
single processing device or a plurality of processing devices.
Such a processing device may be a microprocessor, micro-
controller, digital signal processor, microcomputer, central
processing unit, field programmable gate array, program-
mable logic device, state machine, logic circuitry, analog
circuitry, digital circuitry, and/or any device that manipulates
signals (analog and/or digital) based on hard coding of the
circuitry and/or operational instructions. The processing
module, module, processing circuit, and/or processing unit
may be, or further include, memory and/or an integrated
memory element, which may be a single memory device, a
plurality of memory devices, and/or embedded circuitry of
another processing module, module, processing circuit, and/
or processing unit. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-vola-
tile memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital informa-
tion. Note that if the processing module, module, processing
circuit, and/or processing unit includes more than one pro-
cessing device, the processing devices may be centrally
located (e.g., directly coupled together via a wired and/or
wireless bus structure) or may be distributedly located (e.g.,
cloud computing via indirect coupling via a local area net-
work and/or a wide area network). Further note that if the
processing module, module, processing circuit, and/or pro-
cessing unit implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element may store,
and the processing module, module, processing circuit, and/
or processing unit executes, hard coded and/or operational
instructions corresponding to at least some of the steps and/or
functions illustrated in one or more of the Figures. Such a
memory device or memory element can be included in an
article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these functional
building blocks have been arbitrarily defined for convenience
of description. Alternate boundaries could be defined as long
as the certain significant functions are appropriately per-
formed. Similarly, flow diagram blocks may also have been
arbitrarily defined herein to illustrate certain significant func-
tionality. To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claimed invention. One of average skill in the art
will also recognize that the functional building blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or by discrete components,

10

15

20

25

30

35

40

45

50

55

60

65

96

application specific integrated circuits, processors executing
appropriate software and the like or any combination thereof.

The present invention may have also been described, at
least in part, in terms of one or more embodiments. An
embodiment of the present invention is used herein to illus-
trate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manufac-
ture, a machine, and/or of a process that embodies the present
invention may include one or more of the aspects, features,
concepts, examples, etc. described with reference to one or
more of the embodiments discussed herein. Further, from
figure to figure, the embodiments may incorporate the same
or similarly named functions, steps, modules, etc. that may
use the same or different reference numbers and, as such, the
functions, steps, modules, etc. may be the same or similar
functions, steps, modules, etc. or different ones.

While the transistors in the above described figure(s) is/are
shown as field effect transistors (FETs), as one of ordinary
skill in the art will appreciate, the transistors may be imple-
mented using any type of transistor structure including, but
not limited to, bipolar, metal oxide semiconductor field effect
transistors (MOSFET), N-well transistors, P-well transistors,
enhancement mode, depletion mode, and zero voltage thresh-
old (VT) transistors.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time or
discrete time, and single-ended or differential. Forinstance, if
a signal path is shown as a single-ended path, it also repre-
sents a differential signal path. Similarly, if a signal path is
shown as a differential path, it also represents a single-ended
signal path. While one or more particular architectures are
described herein, other architectures can likewise be imple-
mented that use one or more data buses not expressly shown,
direct connectivity between elements, and/or indirect cou-
pling between other elements as recognized by one of average
skill in the art.

The term “module” is used in the description of the various
embodiments of the present invention. A module includes a
processing module, a functional block, hardware, and/or soft-
ware stored on memory for performing one or more functions
as may be described herein. Note that, if the module is imple-
mented via hardware, the hardware may operate indepen-
dently and/or in conjunction software and/or firmware. As
used herein, a module may contain one or more sub-modules,
each of which may be one or more modules.

While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

What is claimed is:

1. A method for execution by one or more processing
modules of one or more computing devices to securely store
a data file in a dispersed storage network (DSN) in a manner
to increase difficulty in hacking the data file, the method
comprises:

encoding the data file into a plurality of data portions,

wherein a threshold number of the data portions are
required to reconstruct the data file;

for a first data portion of the plurality of data portions:

assigning a first unique source name to the first data
portion;

dispersed storage error encoding the first data portion to
produce one or more sets of encoded data slices,

US 9,154,298 B2

97

wherein, to recover the first data portion, a threshold
number of encoded data slices for each of the one or
more sets of encoded data slices are required to be
retrieved;
generating one or more sets of DSN addresses for the
one or more sets of encoded data slices based on the
first unique source name;
identifying a first set of storage units of the DSN based
on the one or more sets of DSN addresses, wherein a
storage unit of the first set of storage units has an
assigned address range in which a corresponding
DSN address of one of the one or more sets of DSN
addresses falls; and
sending the one or more sets of encoded data slices to the
first set of storage units in accordance with the one or
more sets of DSN addresses; and
for a second data portion of the plurality of data portions:
assigning a second unique source name to the second
data portion;
dispersed storage error encoding the second data portion
to produce a second one or more sets of encoded data
slices, wherein, to recover the second data portion, a
threshold number of encoded data slices for each of
the second one or more sets of encoded data slices are
required to be retrieved;
generating a second one or more sets of DSN addresses
for the second one or more sets of encoded data slices
based on the second unique source name;
identifying a second set of storage units of the DSN
based on the second one or more sets of DSN
addresses, wherein a storage unit of the second set of
storage units has an assigned address range in which a
corresponding DSN address of the second one of the
one or more sets of DSN addresses falls; and
sending the second one or more sets of encoded data
slices to the second set of storage units in accordance
with the second one or more sets of DSN addresses,
wherein unauthorized acquisition of a DSN address of
the one or more sets of DSN addresses yields substan-
tially no information regarding a DSN address of the
second one or more sets of DSN addresses.
2. The method of claim 1 further comprises:
dividing the first data portion into a plurality of data seg-
ments;
for a first data segment of the plurality of data segments:
assigning the first unique source name to the first data
segment,
dispersed storage error encoding the first data segment
to produce a first set of encoded data slices of the one
or more sets of encoded data slices;
generating a first set of DSN addresses of the one or
more sets of DSN addresses for the first set of encoded
data slices based on the first unique source name,
wherein a DSN address of the first set of DSN
addresses falls within the assigned address range of
the storage unit of the first set of storage units; and
sending the first set of encoded data slices to the first set
of storage units in accordance with the first sets of
DSN addresses; and
for a second data segment of the plurality of data segments:
assigning the first unique source name to the second data
segment,
dispersed storage error encoding the second data seg-
ment to produce a second set of encoded data slices of
the one or more sets of encoded data slices;
generating a second set of DSN addresses of the one or
more sets of DSN addresses for the second set of

10

15

20

25

30

35

40

45

98

encoded data slices based on the first unique source
name, wherein a DSN address of the second set of
DSN addresses falls within the assigned address
range of the storage unit of the first set of storage
units; and
sending the second set of encoded data slices to the first
set of storage units in accordance with the second sets
of DSN addresses.
3. The method of claim 1 further comprises:
for the first data portion:
dispersed storage error encoding the first data portion to
produce a first set of encoded data slices, wherein, to
recover the first data portion, a threshold number of
encoded data slices of the first set of encoded data
slices are required to be retrieved;
generating a first set of DSN addresses for the first set of
encoded data slices based on the first unique source
name; and
sending the first set of encoded data slices to the first set
of' storage units in accordance with the first set of DSN
addresses; and
for the second data portion:
dispersed storage error encoding the second data portion
to produce a second set of encoded data slices,
wherein, to recover the second data portion, a thresh-
old number of encoded data slices of the second set of
encoded data slices are required to be retrieved;
generating a second set of DSN addresses for the second
set of encoded data slices based on the second unique
source name; and
sending the second set of encoded data slices to the
second set of storage units in accordance with the
second set of DSN addresses.
4. The method of claim 1, wherein the encoding the data

file comprises at least one of:

dividing the data file into the plurality of data portions;

encrypting the data file in accordance with a key to produce
an encrypted data file and dividing the encrypted data
file into the plurality of data portions;

encrypting the data file in accordance with the key to pro-
duce the encrypted data file, combining a representation
of the key with encrypted data file to produce a com-
bined data file, and dividing the combined data file into
the plurality of data portions;

dispersed storage error encoding the data file to produce
the plurality of data portions; and

performing a secret sharing function on the data file to
produce the plurality of data portions.

5. The method of claim 1, wherein the generating a set of

50 DSN addresses of the one or more sets of DSN addresses

55

65

comprises at least one of:

utilizing an addressing pinwheel to generate the set of DSN
addresses based on the first unique source name;

performing a deterministic function on the first unique
source name to generate the set of DSN addresses;

performing a mathematical function on the first unique
source name to generate the set of DSN addresses; and

performing a logical function on the first unique source
name to generate the set of DSN addresses.

6. The method of claim 1 further comprises:

in a file directory, linking the first and second unique source
names to a name of the data file.

7. The method of claim 1 further comprises:

generating the first unique source name based on a name of
the data file; and

generating the second unique source name based on the
name of the data file.

US 9,154,298 B2

99

8. The method of claim 1 further comprises:
for the first data portion:
encoding the first data portion into a plurality of encoded
data segments, wherein at least a threshold number of
encoded data segments of the plurality of encoded
data segments are required to reconstruct the first data
portion;
dispersed storage error encoding the plurality of
encoded data segments to produce a plurality of sets
of encoded data slices;
generating a plurality of sets of DSN addresses for the
plurality of sets of encoded data slices based on the
first unique source name; and
sending the plurality of sets of encoded data slices to the
first set of storage units in accordance with the plural-
ity of sets of DSN addresses.
9. The method of claim 1 further comprises:
for a third data portion of the plurality of data portions:
assigning a third unique source name to the third data
portion;
dispersed storage error encoding the third data portion to
produce a third one or more sets of encoded data
slices, wherein, to recover the third data portion, a
threshold number of encoded data slices for each of
the third one or more sets of encoded data slices are
required to be retrieved;
generating a third one or more sets of DSN addresses for
the third one or more sets of encoded data slices based
on the third unique source name;
identifying a third set of storage units of the DSN based
on the third one or more sets of DSN addresses,
wherein a storage unit of the third set of storage units
has an assigned address range in which a correspond-
ing DSN address of the third one of the one or more
sets of DSN addresses falls; and
sending the third one or more sets of encoded data slices
to the third set of storage units in accordance with the
third one or more sets of DSN addresses.
10. The method of claim 1 further comprises:
for a third data portion of the plurality of data portions:
assigning the first unique source name to the third data
portion;
dispersed storage error encoding the third data portion to
produce a third one or more sets of encoded data
slices, wherein, to recover the third data portion, a
threshold number of encoded data slices for each of
the third one or more sets of encoded data slices are
required to be retrieved;
generating a third one or more sets of DSN addresses for
the third one or more sets of encoded data slices based
on the first unique source name; and
sending the third one or more sets of encoded data slices
to the first set of storage units in accordance with the
third one or more sets of DSN addresses.
11. A dispersed storage (DS) module comprises:
an encoding module, when operable within a computing
device, causes the computing device to:
encode a data file into a plurality of data portions,
wherein a threshold number of the data portions are
required to reconstruct the data file;
afirst data portion module, when operable within the com-
puting device, causes the computing device to:
for a first data portion of the plurality of data portions:
assign a first unique source name to the first data
portion;
dispersed storage error encode the first data portion to
produce one or more sets of encoded data slices,

5

10

15

20

25

30

35

40

45

50

55

60

65

100

wherein, to recover the first data portion, a thresh-
old number of encoded data slices for each of the
one or more sets of encoded data slices are required
to be retrieved;
generate one or more sets of dispersed storage net-
work (DSN) addresses for the one or more sets of
encoded data slices based on the first unique source
name;
identifying a first set of storage units of the DSN based
on the one or more sets of DSN addresses, wherein
a storage unit of the first set of storage units has an
assigned address range in which a corresponding
DSN address of one of the one or more sets of DSN
addresses falls; and
send the one or more sets of encoded data slices to the
first set of storage units in accordance with the one
or more sets of DSN addresses; and
a second data portion module, when operable within the
computing device, causes the computing device to:
for a second data portion of the plurality of data portions:
assign a second unique source name to the second
data portion;
dispersed storage error encode the second data por-
tion to produce a second one or more sets of
encoded data slices, wherein, to recover the second
data portion, a threshold number of encoded data
slices for each of the second one or more sets of
encoded data slices are required to be retrieved;
generate a second one or more sets of DSN addresses
for the second one or more sets of encoded data
slices based on the second unique source name;
identify a second set of storage units of the DSN based
on the second one or more sets of DSN addresses,
wherein a storage unit of the second set of storage
units has an assigned address range in which a
corresponding DSN address of the second one of
the one or more sets of DSN addresses falls; and
send the second one or more sets of encoded data
slices to the second set of storage units in accor-
dance with the second one or more sets of DSN
addresses, wherein unauthorized acquisition of a
DSN address of the one or more sets of DSN
addresses yields substantially no information
regarding a DSN address of the second one or more
sets of DSN addresses.
12. The DS module of claim 11 further comprises:
the first data portion module further functions to:
divide the first data portion into a plurality of data seg-
ments;
for a first data segment of the plurality of data segments:
assign the first unique source name to the first data
segment;
dispersed storage error encode the first data segment
to produce a first set of encoded data slices of the
one or more sets of encoded data slices;
generate a first set of DSN addresses of the one or
more sets of DSN addresses for the first set of
encoded data slices based on the first unique source
name, wherein a DSN address of the first set of
DSN addresses falls within the assigned address
range of the storage unit of the first set of storage
units; and
send the first set of encoded data slices to the first set
of storage units in accordance with the first sets of
DSN addresses; and
for a second data segment of the plurality of data seg-
ments:

US 9,154,298 B2

101

assign the first unique source name to the second data
segment;

dispersed storage error encode the second data seg-
ment to produce a second set of encoded data slices
of the one or more sets of encoded data slices;

generate a second set of DSN addresses of the one or
more sets of DSN addresses for the second set of
encoded data slices based on the first unique source
name, wherein a DSN address of the second set of
DSN addresses falls within the assigned address
range of the storage unit of the first set of storage
units; and

send the second set of encoded data slices to the first
set of storage units in accordance with the second
sets of DSN addresses.

13. The DS module of claim 11 further comprises:

the first data portion module further functions to:

for the first data portion:

dispersed storage error encode the first data portion to
produce a first set of encoded data slices, wherein,
to recover the first data portion, a threshold number
of encoded data slices of the first set of encoded
data slices are required to be retrieved;

generate a first set of DSN addresses for the first set of
encoded data slices based on the first unique source
name; and

send the first set of encoded data slices to the first set
of storage units in accordance with the first set of
DSN addresses; and

the second data portion module further functions to:
for the second data portion:

dispersed storage error encode the second data por-
tion to produce a second set of encoded data slices,
wherein, to recover the second data portion, a
threshold number of encoded data slices of the
second set of encoded data slices are required to be
retrieved;

generate a second set of DSN addresses for the second
set of encoded data slices based on the second
unique source name; and

sending the second set of encoded data slices to the
second set of storage units in accordance with the
second set of DSN addresses.

14. The DS module of claim 11, wherein the encoding
module functions to encode the data file by at least one of:

dividing the data file into the plurality of data portions;

encrypting the data file in accordance with a key to produce
an encrypted data file and dividing the encrypted data
file into the plurality of data portions;

encrypting the data file in accordance with the key to pro-

duce the encrypted data file, combining a representation
of the key with encrypted data file to produce a com-
bined data file, and dividing the combined data file into
the plurality of data portions;

dispersed storage error encoding the data file to produce

the plurality of data portions; and

performing a secret sharing function on the data file to

produce the plurality of data portions.

15. The DS module of claim 11, wherein the first data
portion module functions to generate a set of DSN addresses
of the one or more sets of DSN addresses by at least one of:

utilizing an addressing pinwheel to generate the set of DSN

addresses based on the first unique source name;
performing a deterministic function on the first unique

source name to generate the set of DSN addresses;
performing a mathematical function on the first unique

source name to generate the set of DSN addresses; and

10

15

20

25

30

35

40

45

50

55

60

65

102

performing a logical function on the first unique source
name to generate the set of DSN addresses.
16. The DS module of claim 11 further comprises:
the encoding module further functions to, in a file directory,
link the first and second unique source names to a name
of the data file.
17. The DS module of claim 11 further comprises:
the first data portion module functions to generate the first
unique source name based on a name of the data file; and
the second data portion module functions to generate the
second unique source name based on the name of the
data file.
18. The DS module of claim 11 further comprises:
the first data portion module further functions to:
for the first data portion:
encode the first data portion into a plurality of
encoded data segments, wherein at least a threshold
number of encoded data segments of the plurality
of encoded data segments are required to recon-
struct the first data portion;
dispersed storage error encode the plurality of
encoded data segments to produce a plurality of
sets of encoded data slices;
generate a plurality of sets of DSN addresses for the
plurality of sets of encoded data slices based on the
first unique source name; and
send the plurality of sets of encoded data slices to the
first set of storage units in accordance with the
plurality of sets of DSN addresses.
19. The DS module of claim 11 further comprises:
a third data portion module, when operable within the
computing device, causes the computing device to:
for a third data portion of the plurality of data portions:
assign a third unique source name to the third data
portion;
dispersed storage error encode the third data portion
to produce a third one or more sets of encoded data
slices, wherein, to recover the third data portion, a
threshold number of encoded data slices for each of
the third one or more sets of encoded data slices are
required to be retrieved;
generate a third one or more sets of DSN addresses for
the third one or more sets of encoded data slices
based on the third unique source name;
identify a third set of storage units of the DSN based
on the third one or more sets of DSN addresses,
wherein a storage unit of the third set of storage
units has an assigned address range in which a
corresponding DSN address of the third one of the
one or more sets of DSN addresses falls; and
send the third one or more sets of encoded data slices
to the third set of storage units in accordance with
the third one or more sets of DSN addresses.
20. The DS module of claim 11 further comprises:
a third data portion module, when operable within the
computing device, causes the computing device to:
for a third data portion of the plurality of data portions:
assign the first unique source name to the third data
portion;
dispersed storage error encode the third data portion
to produce a third one or more sets of encoded data
slices, wherein, to recover the third data portion, a
threshold number of encoded data slices for each of
the third one or more sets of encoded data slices are
required to be retrieved;

US 9,154,298 B2
103 104

generate a third one or more sets of DSN addresses for
the third one or more sets of encoded data slices
based on the first unique source name; and

send the third one or more sets of encoded data slices
to the first set of storage units in accordance with 5
the third one or more sets of DSN addresses.

#* #* #* #* #*

